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When n > 2 it is well known that the spherical partial sums of n-fold Fourier integrals
of the characteristic function of a ball diverge at the origin, because of the jump at the
boundary of the ball. The relation between convergence properties of spherical partial
sums and geometry of discontinuities of the function being expanded was investigated
in the well-known paper of Kahane. The most remarkable result, proved by Kahane in this
paper, asserts that for the characteristic function of a bounded domain in R3 the inverse
statement is also true: if the surface is analytic and if the spherical Fourier inversion fails at
a single point, then the surface must be a sphere and the point must be the center. In this
Note we consider nonspherical partial sums, i.e. Fourier integrals under summation over
smoothly bounded strongly convex symmetric sets and prove the natural generalization of
the Kahane theorem.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour n > 2 on sait que les sommes partielles sphériques des intégrales n-ièmes de la
fonction caractéristique d’une boule divergent à l’origine ; cela résulte du saut de cette
fonction à la frontière de la boule. La relation entre les propriétés de convergence des
sommes partielles sphériques et la géométrie des discontinuités de la fonction considérée
a été étudiée en détail dans un article bien connu de Kahane : le résultat le plus intéressant
démontré par Kahane est que pour la fonction caractéristique d’un domaine borné de R3

la proposition réciproque est également vraie, à savoir que si la surface est analytique et si
l’inverse de Fourier est réduite à un point, alors la surface doit être une sphère et le point
est le centre de cette sphère. Dans cette Note on considère des sommes partielles non
sphériques, c’est-à-dire des intégrales de Fourier sur des ensembles symétriques, fortement
convexes bornés à frontières régulières ; on démontre ainsi une généralisation naturelle du
théorème de Kahane.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The main object of this Note is a class of piecewise smooth functions which we define as follows:
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Definition 1.1. Let Ω be a bounded domain in Rn with smooth boundary Γ. A function f (x) is said to be piecewise smooth
if f (x) = χΩ(x)g(x), where χΩ(x) is a characteristic function of Ω, and g(x) ∈ C∞(Rn).

Let C be an open set in Rn symmetrical with respect to the origin and with a smooth strongly convex boundary. Recall,
a surface is called strongly convex if the Gaussian curvature is positive at every point of the surface.

We consider nonspherical partial sums of n-fold Fourier integrals associated with C ,

SλC f (x) =
∫

λ−1ξ∈C

f̂ (ξ)eix·ξ dξ, (1)

where f̂ (ξ) is the Fourier transform of a piecewise smooth function f : f̂ (ξ) = (2π)−n
∫

Rn f (x)e−ix·ξ dx. If C is a ball,
C = {ξ : |ξ | < 1}, then we have the spherical partial sums.

If we introduce a function A(ξ) ∈ C∞(Rn\0) with properties:

A(tξ) = t A(ξ), ∀t > 0, ∀ξ ∈ Rn, (2) A(ξ) = 1, ξ ∈ ∂C, (3)

then we may define symmetric, positive elliptic pseudodifferential operator A(D) with domain of definition C∞
0 (Rn) and

order 1 as follows: A(D)u(x) = ∫
Rn û(ξ)A(ξ)eix·ξ dξ , where u ∈ C∞

0 (Rn). The function A(ξ) is called a symbol of the pseu-
dodifferential operator A(D). The closure A of A(D) in L2(RN ) is a selfadjoint operator and it can be represented by (see,
for example, [15]) A = ∫ ∞

0 λdEλ , where {Eλ} is decomposition of unity. It is not hard to show, that Eλ f (x) coincides with
(1). A very simple example for A(D) is m

√
Pm(D), where Pm(D) is a positive elliptic differential operator of order m.

If n = 2 then the partial sums SλC f (x) of a piecewise smooth function f as λ → ∞, converge uniformly on any compact
K ⊂ Rn \ Γ (see, for example, [13] and [1]), no matter how the set C and the set of discontinuity Γ of f are related.
But when n � 3, however, this relation is a key factor. For example, simple calculations show, that the spherical partial
sums of n-fold Fourier integrals of the characteristic function of a ball diverge at the origin, although the function in
question is smooth at this point. In 1993 M. Pinsky [12] studied in detail the convergence at the origin of spherical partial
sums for functions supported in the ball {x: |x| � R} and discovered the criterion for the convergence at the origin. In
the mathematical literature this result is called “the Pinsky phenomenon”. The relation between convergence properties of
spherical partial sums and geometry of discontinuities of the function being expanded was also investigated in the well-
known paper of Kahane [8]. The most remarkable result, proved by Kahane in this paper asserts, that for the characteristic
function of a bounded domain in R3 the inverse of the statement on the characteristic function of the ball is also true: if
the surface is analytic and if the spherical Fourier inversion fails at a single point, then the surface must be a sphere and
the point must be its center.

If we consider the absolute convergence, then even in case n = 2 the convergence of SλC f (x) depends on geometrical
properties of the relationship between Γ and C . This was for the first time noted and studied by Maslov in [10] and [9].
Following Maslov’s idea, Sh.A. Alimov in [2] and [3] classified points in Rn , n � 3, depending on their position to the surface
of discontinuity Γ of the piecewise smooth function f and obtained sufficient conditions for the uniform convergence of
SλC f (x). In particular, the author proved [3], that the spherical partial sums converge at the points that satisfy the following
condition: for each sphere centered at any of these points the order of the contact with Γ do not exceed 1. Considering the
characteristic function of a unit ball in R3, we can see that the mentioned sufficient condition is quite precise.

It was first noted by Pinsky and Taylor [13] (see also [6]), that in order to obtain the same effect as the Pinsky phenomena
for nonspherical partial sums SλC f (x), one should consider functions supported in the dual to C set.

Definition 1.2. Let A(ξ) be defined by (2) and (3). Then an open set B with a smooth boundary ∂ B is said to be dual to C
if ∂ B = {∇ A(ξ), ξ ∈ ∂C}.

In [13] a piecewise smooth function f0(x) was defined as follows: let g(x) ∈ C∞(RN ), then f0(x) = g(x), x ∈ B and
f0(x) = 1

2 g(x), x ∈ ∂ B and f0(x) = 0 otherwise. The authors proved in particular, the following:

Theorem (Pinsky and Taylor). Let f0 be a piecewise smooth function, defined as above, and n � 3. Then limλ→∞ SλC f0(x) = f0(x),
∀x 	= 0.

Convergence of the partial sums SλC f0(0) recently was investigated in [5]. The authors established necessary and suf-
ficient conditions for f0, which guarantee the convergence of this partial sums. In other words, authors proved the Pinsky
phenomenon for SλC f (x), when a piecewise smooth function f is supported on the dual set B and n � 3. From this result,
in particular, one has, that the partial sums SλC f (x) of the characteristic function f of the dual set B diverge at the origin.
After having this result proved, one may ask, whether or not the inverse of it is true as well? The aim of this paper is to
give a positive answer to this question, proving the result of Kahane with appropriate formulation for nonspherical partial
sums SλC f (x) of 3-fold Fourier integrals.

2. On dual sets

In this section we follow Alimov’s idea in [2] and introduce the p(x) function and use it to give an equivalent definition
for dual sets.
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Let ∂C be a closed connected analytic surface in Rn with strongly positive Gaussian curvature at each its point. (Through-
out the paper we use the term “analytic” just for “R-analytic” objects and do not consider complex functions and surfaces.)
It follows from the convexity of ∂C that for any x ∈ Rn, x 	= 0 there exists a pair of points θ+(x) and θ−(x) ∈ ∂C at which the
exterior normal to ∂C has the same direction with x and −x respectively. Note that the mapping x → θ+(x) is inverse to the
Gauss mapping. Since the surface ∂C is analytic, then using the property of the Gauss mapping, we obtain that functions
θ±(x) are analytic (see, for example, [11, p. 161]). Obviously θ±(x) = θ∓(−x) and it is clear that θ±(tx) = θ±(x), t > 0, x ∈ Rn .

Now we can define an analytic function on Rn \ {0} as p(x) = x · θ+(x), x ∈ Rn . We have p(λx) = |λ|p(x) � 0. Note if
A(ξ) = |ξ |, then p(x) = |x|.

One can prove (see, e.g., [5]), that p(x) satisfies the following properties:

Proposition 2.1. There exist positive constants c0 and c1 such that (1) p(x) � c0|x|; (2) |∇p(x)| � c1|x|.

The following proposition gives us the way to define the notion of dual set by using the introduced function p(x).

Proposition 2.2. Let B be the dual to C set and p(x) be defined as above. Then B = {x: p(x) < 1}.

Proof. Let us introduce the notation ∂G = {x: p(x) = 1} and ν(ξ) be a unit normal vector to ∂C at the point ξ . As it
follows directly from the definition ∂G = {α(ξ)ν(ξ): ξν(ξ) = 1

α(ξ)
, ξ ∈ ∂C}, where α(ξ) > 0 is a scalar function. Let A(ξ) be

defined by (2) and (3). Then ν(ξ) = |∇ A(ξ)|−1∇ A(ξ) and the homogeneity of A(ξ) implies that ξ∇ A(ξ) = A(ξ), for ξ 	= 0.
Particularly for ξ ∈ ∂C , we have ξ∇ A(ξ) = 1 and hence α(ξ) = |∇ A(ξ)|. This fact leads us to ∂G = {∇ A(ξ): ξ ∈ ∂C} = ∂ B . �

It is convenient to introduce the notion of quasi-ball (see [2]):

B(x0; r) = {
x: p(x − x0) < r

}
. (4)

Note, for the dual set we have B = B(0;1).

3. Main result

From here on we consider only three-dimensional case, i.e. n = 3. First, we prove the following technical lemma.

Lemma 3.1. Let f (x) : R3 → R be a piecewise smooth function as in Definition 1.1. Then for the oscillatory integral J (λ) =∫
Ω

f (x)eiλS(x) dx, with a phase function S : ∇ S(x) 	= 0, ∀x ∈ Ω , one has: J (λ) = 1
iλ

∫
Γ

∂ S(x)
∂n(x) |∇ S(x)|−2 f (x)eiλS(x) dσ(x) + O (λ−2),

as λ → ∞, from here on we use the notation dσ(x) for the surface Lebesgue measure.

Proof. We introduce a differential operator, M(D) = 1
|∇ S(x)|2

∑3
j=1

∂ S(x)
∂x j

∂
∂x j

. Then M(D)(eiλS(x)) = iλeiλS(x) , and integrat-

ing by parts, one has: J (λ) = 1
iλ

∫
Ω

f (x)M(D)(eiλS(x))dx = 1
iλ

∫
Γ

∂ S(x)
∂n(x) |∇ S(x)|−2 f (x)eiλS(x) dσ(x) − 1

iλ

∫
Ω

L(D)( f (x))eiλS(x) dx,
where L(D) is a formally conjugate operator to M(D). Integrating by parts once more we obtain that the second integral
can be estimated as O (λ−2). �

We recall that ∂C is a closed connected analytic surface in R3 with strongly positive Gaussian curvature at each point.
The Fourier integral partial sums have the form: SλC f (x) = (2π)−3

∫
λ−1ξ∈C

∫
R3 f (y)ei(x−y)·ξ dy dξ .

Let f (x) be a piecewise smooth function as in Definition 1.1, and the surface of discontinuity Γ of f be ana-
lytic and connected. Then as it follows from the Fubini theorem, SλC f (x) = ∫

Ω
f (y)Dλ(x − y)dy, where the function

Dλ(z) = (2π)−3
∫
λ−1ξ∈C eiz·ξ dξ is known as the Dirichlet kernel. The Dirichlet kernel for strongly convex ∂C is well-studied

and in particular one has the asymptotic expansion (see [7, p. 117]):

Dλ(z) = Cλ
|K (θ+(z))|−1/2

|z|2
[
ei(λp(z)− π

2 )
(
1 + Φ+(z;λ)

) − e−i(λp(z)− π
2 )

(
1 + Φ−(z;λ)

)]
, (5)

where C = −i/(2π)(n+1)/2 and Φ±(z;λ) = ∑∞
j=1 c±

j (z)λ− j , with c±
j ∈ C∞ .

Let x0 be a point in Ω . We fix r0 such that B(x0; r0) ⊂ Ω and introduce the function ψ(x) ∈ C∞
0 (R3), such that ψ(x) = 1

if |x − x0| � r0/2 and supp ψ ⊂ B(x0; r0).
We have:

SλC f (x0) =
∫
Ω

ψ(y) f (y)Dλ(x0 − y)dy +
∫
Ω

(
1 − ψ(y)

)
f (y)Dλ(x0 − y)dy. (6)

We note that ψ(x) f (x) is a smooth function in R3 and therefore the first integral here converges to f (x0) as λ → ∞ (see,
e.g., [4]).

Now we introduce the following notation: I(λ) = ∫
Ω

(1 − ψ(y)) f (y)Dλ(x0 − y)dy. Using the translation z = y − x0 one
has: I(λ) = ∫

(1 − ψ(y)) f (y)Dλ(x0 − y)dy = ∫
′ (1 − ψ(z + x0)) f (z + x0)Dλ(z)dz, where Ω ′ = {z : z = y − x0, y ∈ Ω}.
Ω Ω
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Employing the expansion (5) we have: I(λ) = λ
∫
Ω ′ G1(z)(eiλp(z) + e−iλp(z))dz + ∫

Ω ′ G2(z)(eiλp(z) + e−iλp(z))dz. It is nec-
essary to note that both functions G1, G2 vanish near the origin. Therefore we can apply Lemma 3.1 to all integrals and
obtain:

I(λ) =
∫

∂Ω ′
F (z) sin

(
λp(z)

)
dσ(z) + O

(
λ−1). (7)

It is not hard to write the explicit form of smooth function F .
The following lemma describes this integral:

Lemma 3.2. Let Z be an analytic connected closed surface in R3 . F (z) is a smooth function on Z and p(z) is analytic on Z .
If J (λ) = ∫

Z F (z)eiλp(z) dσ(z) does not converge to 0, as λ → ∞, then p(z) = Const, ∀z ∈ Z .

Proof. Let φ(u) be a parametrization of Z . We denote by K the set of stationary points of p(z), i.e. K = {z = φ(u): ∇(p ◦
φ)(u) = 0}. If K is empty then obviously J (λ) tends to zero as λ → ∞. Moreover, if J (λ) does not converge to 0, then
meas(K ) > 0. Indeed, if it was not the case, then for any given ε we could introduce such a partition of unity, that
lim supλ→∞ | J (λ)| < ε . But this cannot take place.

On the other hand g ≡ ∇(p ◦φ) is an analytic function and g = 0 in K with meas(K ) > 0. Therefore (see, e.g., [14]) g ≡ 0.
This means that p(z) is locally constant on Z . But since Z is a connected set, then p(z) = Const, ∀z ∈ Z . �

Now we are ready to formulate our main result (the generalization of the Kahane theorem):

Theorem 3.3. Let C be a smooth bounded, strongly convex symmetric set in R3 . Let f (x) be a piecewise smooth function such, that
supp f = Ω , where Ω is an open set, bounded with an analytic and connected surface ∂Ω .

If x0 is a point in Ω where the partial sums SλC f (x0) does not converge to f (x0), then Ω = B(x0; R) for some R.

Proof. As it immediately follows from (6), (7) and Lemma 3.2, if SλC f (x0) does not converge to f (x0), as λ → ∞ then
p(z) = R , ∀z ∈ ∂Ω ′ , for some R . Therefore Ω ′ has the form Ω ′ = {z: p(z) < R}. Thus, according to our notation (4) one has
Ω = B(x0; R). �
Remark 3.4. In the Pinsky and Taylor theorem we see that SλC f for function f with a specific supporter B(0;1) (i.e. dual
to C ) may diverge at no more than one point. As it follows from Theorem 3.3 in three-dimensional case this feature is in
fact inherent in a broader class of functions (i.e. functions which supporter bounded with analytic surface).

Remark 3.5. It is necessary to note that both conditions: analyticity and connectedness of ∂Ω are crucial for Theorem 3.3
(see [8]).
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