

Algebraic Geometry

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Einstein–Hermitian connection on twisted Higgs bundles

Connexions d'Einstein–Hermite sur les fibrés de Higgs tordus

Indranil Biswas^a, Tomás L. Gómez^{b,c}, Norbert Hoffmann^d, Amit Hogadi^a

^a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

^b Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Serrano 113bis, 28006 Madrid, Spain

^c Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

^d Mathematisches Institut der Freien Universität, Arnimallee 3, 14195 Berlin, Germany

ARTICLE INFO

Article history: Received 3 February 2010 Accepted after revision 27 July 2010

Presented by Christophe Soulé

ABSTRACT

Let X be a smooth projective variety over \mathbb{C} . We prove that a twisted Higgs vector bundle (\mathcal{E}, θ) on X admits an Einstein-Hermitian connection if and only if (\mathcal{E}, θ) is polystable. A similar result for twisted vector bundles (no Higgs fields) was proved in Wang [10]. Our approach is simpler.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit X une variété projective lisse sur \mathbb{C} . Nous démontrons qu'un fibré de Higgs tordu (\mathcal{E}, θ) sur X possède une connexion d'Einstein–Hermite si et seulement si (\mathcal{E}, θ) est polystable. Un résultat analogue pour les fibrés vectoriels (dépourvus d'un champ de Higgs) a été démontré dans Wang [10]. Notre approche est plus simple.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Donaldson, Uhlenbeck and Yau proved that a vector bundle on a complex projective manifold admits an Einstein–Hermitian connection if and only if it is polystable [3,9]. A generalization of Einstein–Hermitian connections for Higgs bundles was formulated by Hitchin (for curves) and Simpson (higher dimensions). They proved that a Higgs bundle (\mathcal{E}, θ) admits an Einstein–Hermitian connection if and only if it is polystable [4,8].

Our aim here is to establish a similar result for twisted sheaves on a smooth complex projective variety. Let X be an irreducible smooth projective variety over \mathbb{C} . A *twisted vector bundle* on X is a pair $(\mathcal{X}, \mathcal{E})$, where

 $\mathcal{X} \to X$

is a gerbe banded by μ_n (the *n*-th roots of unity) for some *n*, and \mathcal{E} is a vector bundle over \mathcal{X} ; see [7,6,5,11] for twisted bundles. A twisted Higgs bundle on *X* is a twisted vector bundle together with a Higgs field on it.

We prove that a twisted Higgs bundle on X admits an Einstein–Hermitian connection if and only if it is polystable (see Theorem 3.1).

Let *G* be a connected reductive linear algebraic group defined over \mathbb{C} . Theorem 3.1 generalizes to twisted Higgs principal *G*-bundles (this is explained at the end).

1631-073X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.07.027

E-mail addresses: indranil@math.tifr.res.in (I. Biswas), tomas.gomez@icmat.es (T.L. Gómez), norbert.hoffmann@fu-berlin.de (N. Hoffmann), amit@math.tifr.res.in (A. Hogadi).

In [10], Wang proved a similar result for twisted vector bundles without Higgs structure.

2. Twisted Higgs bundles

The base field will be \mathbb{C} . For any positive integer *n*, by μ_n we will denote the finite subgroup of \mathbb{C}^* consisting of the *n*-th roots of 1.

Let X be an irreducible smooth projective variety. Let

$$f: \mathcal{X} \to X$$

(1)

be a gerbe banded by μ_n . The cotangent bundle of \mathcal{X} will be denoted by $\Omega^1_{\mathcal{X}}$. For any nonnegative integer *i*, let $\Omega^i_{\mathcal{X}} :=$ $\bigwedge^i \Omega^1_{\mathcal{X}}$ be the *i*-th exterior power. Let

 $\mathcal{E} \to \mathcal{X}$

be a vector bundle. Let $End(\mathcal{E}) := \mathcal{E} \otimes \mathcal{E}^*$ be the endomorphism bundle. The associative algebra structure of $End(\mathcal{E})$ and the exterior algebra structure of $\bigoplus_{i\geq 0} \Omega^i_{\mathcal{X}}$ together define an algebra structure on $End(\mathcal{E}) \otimes (\bigoplus_{i\geq 0} \Omega^i_{\mathcal{X}})$.

A Higgs field on \mathcal{E} is a section θ of $End(\mathcal{E}) \otimes \Omega^1_{\mathcal{X}}$ such that the section $\theta \wedge \theta$ of $End(\mathcal{E}) \otimes \Omega^2_{\mathcal{X}}$ vanishes identically. A Higgs bundle on \mathcal{X} is a pair (\mathcal{E}, θ) , where \mathcal{E} is a vector bundle on \mathcal{X} , and θ is a Higgs field on \mathcal{E} . A Higgs bundle on \mathcal{X} will be called a *twisted Higgs bundle* on X. Given a Higgs bundle (\mathcal{E}, θ) on \mathcal{X} , a coherent subsheaf \mathcal{F} of \mathcal{E} will be called a Higgs subsheaf if $\theta(\mathcal{F}) \subset \mathcal{F} \otimes \Omega^1_{\mathcal{X}}$.

Let G be a complex linear algebraic group. A Higgs G-bundle on X is a principal G-bundle $E_G \rightarrow X$ and a section $\beta \in \mathbb{R}^{d}$ $H^0(X, \operatorname{ad}(E_G) \otimes \Omega^1_X)$ such that $\beta \wedge \beta = 0$, where $\operatorname{ad}(E_G)$ is the adjoint vector bundle.

Fix a very ample line bundle L over X. The degree of a torsionfree coherent sheaf \mathcal{F} on \mathcal{X} will be defined to be degree($(\det \mathcal{F})^{\otimes n}/n^2 \in \mathbb{Q}$. Note that $(\det \mathcal{F})^{\otimes n}$ descends to a line bundle on X; its degree is computed using L. Fix a Kähler form ω_X on X representing $c_1(L)$. Since the morphism f in (1) in étale, the pullback

$$\omega_{\mathcal{X}} := f^* \omega_{\mathcal{X}} \tag{2}$$

is a Kähler form on \mathcal{X} . A Higgs bundle (\mathcal{E}, θ) is called *stable* (respectively, *semistable*) if for every Higgs subsheaf \mathcal{F} with $1 \leq \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$, the inequality

$$\frac{\text{degree}(\mathcal{F})}{\text{rank}(\mathcal{F})} < \frac{\text{degree}(\mathcal{E})}{\text{rank}(\mathcal{E})} \left(\text{respectively}, \ \frac{\text{degree}(\mathcal{F})}{\text{rank}(\mathcal{F})} \leqslant \frac{\text{degree}(\mathcal{E})}{\text{rank}(\mathcal{E})} \right)$$

holds. A semistable Higgs bundle is called *polystable* if it is a direct sum of stable Higgs bundles.

For any vector bundle $\mathcal{E} \to \mathcal{X}$, we have a decomposition $\mathcal{E} = \bigoplus_{\chi \in \mu_{\pi}^*} \mathcal{E}_{\chi}$. Henceforth, we will consider vector bundles \mathcal{E} with $\mathcal{E}_{\chi} \neq 0$ for at most one character χ .

Define the homomorphism

$$\rho: \operatorname{GL}(r, \mathbb{C}) \to \operatorname{PGL}(r, \mathbb{C}) \times \mathbb{G}_m =: H \tag{3}$$

by sending A to the class of A and to $(\det A)^n$. Given a vector bundle $\mathcal{E} \to \mathcal{X}$, the extension of its structure group along ρ defines a principal *H*-bundle $\mathcal{E}_H \to \mathcal{X}$. Since the inertia μ_n acts trivially on \mathcal{E}_H , it descends to a principal *H*-bundle $E_H \rightarrow X$. A Higgs field θ on \mathcal{E} induces a Higgs field θ_H on \mathcal{E}_H . This Higgs field θ_H on \mathcal{E}_H descends to a Higgs field on E_H . which we again denote by θ_{H} .

The definitions of Higgs (semi)stable and polystable principal bundles are recalled in [1, p. 551], [2].

Lemma 2.1. A Higgs bundle (\mathcal{E}, θ) on \mathcal{X} is polystable if and only if the induced Higgs H-bundle (E_H, θ_H) on X is polystable.

Proof. The central isogeny ρ in (3) produces a bijection of parabolic subgroups. For any parabolic subgroup $P \subset GL(r, \mathbb{C})$, there is a natural bijective correspondence between the reductions of structure group of the principal $GL(r, \mathbb{C})$ -bundle \mathcal{E} to P over any open subset $f^{-1}(U)$ and the reductions of structure group of the principal H-bundle E_H to $\rho(P)$ over U. This bijection proves the lemma. \Box

3. Einstein-Hermitian connection on polystable twisted Higgs bundles

A Hermitian structure on a vector bundle $\mathcal E$ on $\mathcal X$ is a smooth inner product on the fibers which is invariant under the action of μ_n on the fibers of \mathcal{E} . A Hermitian structure on \mathcal{E} produces a C^{∞} complex connection on \mathcal{E} . Let (\mathcal{E}, θ) be a Higgs bundle. An *Einstein–Hermitian connection* on (\mathcal{E}, θ) is a Hermitian structure on \mathcal{E} such that corresponding connection ∇ on \mathcal{E} has the following property:

 $\Lambda_{\omega_{\mathcal{X}}}(\operatorname{Curv}(\nabla) + \left[\theta, \theta^*\right]) = c \cdot \operatorname{Id}_{\mathcal{E}},$

for some constant scalar *c*, where $\Lambda_{\omega_{\mathcal{X}}}$ is the adjoint of multiplication by the Kähler form $\omega_{\mathcal{X}}$ (see (2)), Curv(∇) is the curvature of ∇ , and θ^* is the adjoint of θ constructed using the Hermitian form on \mathcal{E} .

Theorem 3.1. Let (\mathcal{E}, θ) be a twisted Higgs bundle on X. Then (\mathcal{E}, θ) is polystable if and only if it admits an Einstein–Hermitian connection.

Proof. Let (\mathcal{E}, θ) be a Higgs bundle on \mathcal{X} . First assume that (\mathcal{E}, θ) is polystable. From Lemma 2.1 we know that the induced Higgs *H*-bundle (E_H, θ_H) on *X* is polystable. A polystable Higgs *H*-bundle on *X* admits an Einstein–Hermitian connection [8,1]. Since (E_H, θ_H) is the descent of $(\mathcal{E}_H, \theta_H)$, an Einstein–Hermitian connection on (E_H, θ_H) produces an Einstein–Hermitian connection on $(\mathcal{E}_H, \theta_H)$. A connection on \mathcal{E}_H defines connection on \mathcal{E} because the homomorphism of Lie algebras

$$\text{Lie}(\text{GL}(r, \mathbb{C})) \rightarrow \text{Lie}(H)$$

induced by the homomorphism ρ in (3) is an isomorphism. The connection on (\mathcal{E}, θ) induced by an Einstein–Hermitian connection on $(\mathcal{E}_H, \theta_H)$ is clearly Einstein–Hermitian.

Conversely, an Einstein–Hermitian connection on (\mathcal{E}, θ) induces an Einstein–Hermitian connection on the associated Higgs *H*-bundle $(\mathcal{E}_H, \theta_H)$, which, in turn, induces an Einstein–Hermitian connection on the descended Higgs *H*-bundle (E_H, θ_H) . Therefore, the Higgs *H*-bundle (E_H, θ_H) is polystable. Hence from Lemma 2.1 we conclude that the Higgs bundle (\mathcal{E}, θ) is polystable. \Box

Let *G* be a connected reductive linear algebraic group defined over \mathbb{C} . Let *Z* be the center of *G*; define *G'* := [*G*, *G*]. The above theorem holds for principal Higgs *G*-bundles on \mathcal{X} . The proof is the same, but, instead of the homomorphism (3), we use the homomorphism

$$\rho: G \to H := G/Z \times (G/G') : g \mapsto (p(g), q(g)^n),$$

where $p: G \to G/Z$ and $q: G \to G/G'$ are the natural projections. Note that $G/G' \cong \mathbb{C}^* \times \cdots \times \mathbb{C}^*$.

Acknowledgements

We thank the referee for comments. The first author thanks Freie Universität Berlin for hospitality while the work was carried out; the visit was supported by the SFB 647: Raum–Zeit–Materie. The second author was supported in part by grant MTM2007-63582 of the Spanish Ministerio de Educación y Ciencia. The third author was supported by the SFB 647: Raum–Zeit–Materie.

References

- [1] I. Biswas, G. Schumacher, Yang-Mills equation for stable Higgs sheaves, Int. J. Math. 20 (2009) 541-556.
- [2] A. Dey, R. Parthasarathi, On Harder-Narasimhan reductions for Higgs principal bundles, Proc. Ind. Acad. Sci. (Math. Sci.) 115 (2005) 127–146.
- [3] S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231-247.
- [4] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59–126.
- [5] N. Hoffmann, U. Stuhler, Moduli schemes of generically simple Azumaya modules, Doc. Math. 10 (2005) 369-389.
- [6] D. Huybrechts, The global Torelli theorem: classical, derived, twisted, in: D. Abramovich, et al. (Eds.), Algebraic Geometry, Seattle, 2005, in: Proceedings of Symposia in Pure Mathematics, vol. 80, 2009, Part 1, pp. 235–258.
- [7] M. Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007) 23-118.
- [8] C.T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867–918.
- [9] K. Uhlenbeck, S.-T. Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) 257–293. [10] S. Wang, Objective *B*-fields and a Hitchin–Kobayashi correspondence, arXiv:0907.4920.
- [11] K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, in: S. Mukai, et al. (Eds.), Moduli Spaces and Arithmetic Geometry, in: Advanced Studies in Pure Mathematics, vol. 45, 2006, pp. 1–30.