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We identify and solve an overlooked problem about the characterization of underdeter-
mined systems of linear equations for which sparse solutions have minimal �1-norm. This
characterization is known as the null space property. When the system has real coefficients,
sparse solutions can be considered either as real or complex vectors, leading to two
seemingly distinct null space properties. We prove that the two properties actually coincide
by establishing a link with a problem about convex polygons in the real plane. Incidentally,
we also show the equivalence between stable null space properties which account for the
stable reconstruction by �1-minimization of vectors that are not exactly sparse.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous identifions et résolvons un problème lié aux systèmes sous-determinés d’équations
linéaires, plus précisément à la propriété de leurs noyaux qui caractérise le fait que
les solutions parcimonieuses soient celles avec la plus petite norme �1. Quand les
coefficients du système sont réels, les solutions parcimonieuses peuvent être considérées
comme vecteurs réels ou complexes, ce qui conduit à deux propriétés des noyaux
a priori distinctes. Nous démontrons que ces deux propriétés sont en fait équivalentes
en établissant un lien avec un problème sur les polygones convexes du plan réel.
Accessoirement, nous prouvons aussi l’équivalence entre des propriétés stables du noyau,
lesquelles expliquent la stabilité de la reconstruction par minimisation �1 de vecteurs qui
ne sont pas exactement parcimonieux.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

This Note deals with the recovery of sparse vectors x from incomplete measurements y = Ax, where A is an m × N
matrix with m � N . The interest in developing sparse data models for solving ill-posed inverse problems originates in the
possibility of such a recovery in underdetermined situations. This is also the fundamental result underlying the recent field
of Compressed Sensing, which aims at acquiring signals/images well below the Nyquist rate by exploiting their sparsity in
an appropriate domain. It is well known by now that the recovery can be carried out by solving the convex optimization
problem

minimize ‖z‖1 subject to Az = y, (P1)
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provided some suitable conditions are satisfied by the matrix A — actually, by its null space. To be more precise, see [1,2]
for details, every vector x supported on a set S is the unique solution of (P1) with y = Ax if and only if

‖uS‖1 < ‖uS‖1 for all u ∈ ker A \ {0}. (1)

The set S designates the complementary of the set S , and the notations uS and uS stand for the vectors whose entries
indexed by S and S , respectively, equal those of u, while the other entries are set to zero. We are also interested in a
strengthening of property (1), namely

‖uS‖1 � ρ‖uS‖1 for all u ∈ ker A \ {0}, (2)

for some 0 < ρ < 1. This stable null space property is actually equivalent to the property that

‖z − x‖1 � 1 + ρ

1 − ρ

[‖z‖1 − ‖x‖1 + 2‖xS‖1
]

whenever Az = Ax.

Note that the latter implies that z = x if x is supported on S and if z is a solution of (P1) with y = Ax. So far, we have
deliberately been ambiguous about the underlying scalar field — often, this is not alluded at all. In fact, the above-mentioned
equivalences are valid in the real and complex settings alike. However, since a real-valued measurement matrix A is also a
complex-valued one, properties (1) and (2) can be interpreted in two different ways. The real versions read

∑
j∈S

|u j| <
∑
�∈S

|u�|
[

or � ρ
∑
�∈S

|u�|
]

for all u ∈ kerR A \ {0}, (3)

while the complex versions read, in view of kerC A = kerR A + i kerR A,

∑
j∈S

√
v2

j + w2
j <

∑
�∈S

√
v2

� + w2
�

[
or � ρ

∑
�∈S

√
v2

� + w2
�

]
for all (v,w) ∈ (kerR A)2 \ {

(0,0)
}
. (4)

We are going to show that properties (3) and (4) are identical. Thus, every complex vector supported on S is recovered
by �1-minimization if and only if every real vector supported on S is recovered by �1-minimization — informally, real
and complex �1-recoveries succeed simultaneously. Before stating the theorem, we point out that, for a real measurement
matrix, one may also recover separately the real and imaginary parts of a complex vector using two real �1-minimizations
— which are linear programs — rather than recovering the vector directly using one complex �1-minimization — which is a
second order cone program.

Theorem 1. For a measurement matrix A ∈ R
m×N and a set S ⊆ {1, . . . , N}, the real null space property (3) is equivalent to the

complex null space property (4).

Proof. It is clear that (4) implies (3). Now, in order to handle null space properties and stable null space properties at once,
we introduce the shorthand ‘≺’ to mean either ‘<’ or ‘� ρ ’. We assume that (3) holds, and we consider (v,w) ∈ (kerR A)2 \
{(0,0)}. We suppose that v and w are linearly independent, for otherwise (4) is clear. By applying (3) to u = αv + βw, we
have ∑

j∈S

|αv j + βw j | ≺
∑
�∈S

|αv� + βw�| for all λ := (α,β) ∈ R
2 \ {0}.

If B S and B S denote the 2 × s and 2 × (N − s) matrices with columns b j := [v j, w j]� , j ∈ S , and b� := [v�, w�]� , � ∈ S ,
respectively, this translates into∥∥B�

S λ
∥∥

1 ≺ ∥∥B�
S
λ
∥∥

1 for all λ ∈ R
2 \ {0}, (5)

in other words∣∣〈λ, B Sμ〉∣∣ = ∣∣〈B�
S λ,μ

〉∣∣ ≺ ∥∥B�
S
λ
∥∥

1 for all λ ∈ R
2 \ {0} and all μ ∈ R

s with ‖μ‖∞ = 1. (6)

Let us observe that (5) implies the injectivity of B�
S

, hence the surjectivity of B S . Thus, for μ ∈ R
s with ‖μ‖∞ = 1, there

exists ν ∈ R
N−s such that B Sν = B Sμ. As a result of (6), we have |〈B�

S
λ,ν〉| ≺ ‖B�

S
λ‖1 for all λ ∈ R

2 \ {0}. This means

that the linear functional f defined on ran B�
S

by f (η) := 〈η,ν〉 has norm ‖ f ‖∗
1 ≺ 1. By the Hahn–Banach theorem, we

extend it to a linear functional f̃ defined on the whole of R
N−s . The latter can be represented as f̃ (η) = 〈η, ν̃〉. The

equality ‖ f̃ ‖∗
1 = ‖ f ‖∗

1 translates into ‖̃ν‖∞ ≺ 1, while the identity f̃ (η) = f (η) for all η ∈ ran B�
S

yields 0 = 〈B�
S
λ, ν̃ − ν〉 =

〈λ, B ν̃ − B ν〉 for all λ ∈ R
2, so that B ν̃ = B ν = B Sμ. In short, for any μ ∈ R

s with ‖μ‖∞ = 1, there exists ν̃ ∈ R
N−s
S S S S
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with ‖̃ν‖∞ ≺ 1 such that B S ν̃ = B Sμ. Therefore, the convex polygon C S := B S [−1,1]s is strictly contained in the convex
polygon C S := B S [−1,1]N−s , respectively is contained in ρ C S . This intuitively implies that

Perimeter(C S) ≺ Perimeter(C S). (7)

In fact, the perimeter of a convex polygon C is the unique minimum of all the perimeters of compact convex sets containing
the vertices of C . This can be seen by isolating the contribution to the perimeter of each angular sector originating from a
point inside C and intercepting two consecutive vertices. One can also invoke Cauchy’s formula, see e.g. [5], for the perimeter
of a compact convex set K as the integral of the length of the projection of K onto a line of direction θ , namely

Perimeter(K) =
π∫

0

[
max

(x,y)∈K

(
x cos(θ) + y sin(θ)

) − min
(x,y)∈K

(
x cos(θ) + y sin(θ)

)]
dθ.

The convex polygons C S and of C S both take the form M[−1,1]n , which may be viewed as the Minkowski sum of the line
segments [−c1, c1], . . . , [−cn, cn], where c1, . . . , cn are the columns of the matrix M — in general dimension, Minkowski
sums of line segments are called zonotopes. The perimeter of such convex polygons is explicitly given by 4(‖c1‖2 + · · · +
‖cn‖2), see e.g. [4]. Thus, (7) reads

4
∑
j∈S

‖b j‖2 ≺ 4
∑
�∈S

‖b�‖2.

Up to the factor 4, this is the complex null space property (4). �
Remark. Sparse recovery can also be achieved by �q-minimization for 0 < q < 1. Its success on a set S is characterized
by the null space property ‖uS‖q < ‖uS‖q for all u ∈ ker A \ {0}, see [2]. The same ambiguity about its real or complex
interpretation arises. The question whether the two notions coincide in this case is open.

Remark. The recovery of sparse complex vectors by �1-minimization can be viewed as the special case n = 2 of the recovery
of jointly sparse real vectors by mixed �1,2-minimization. In this context, see [6] for details, every n-tuple (x1, . . . ,xn) of
vectors in R

N , each of which supported on the same set S , is the unique solution of

minimize
N∑

j=1

√
z2

1, j + · · · + z2
n, j subject to Az1 = Ax1, . . . , Azn = Axn,

if and only if a mixed �1,2 null space property holds, namely∑
j∈S

√
u2

1, j + · · · + u2
n, j <

∑
�∈S

√
u2

1,� + · · · + u2
n,� for all (u1, . . . ,un) ∈ (kerR A)n \ {

(0, . . . ,0)
}
. (8)

It is then natural to wonder whether the real null space property (3) implies the mixed �1,2 null space property (8) when
n � 3. This is also an open question.

Added in proof

Since the submission of this Note, the two open questions raised in the remarks have been answered in the affirmative by Lai and
Liu [3].
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