

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Motivic decomposability of generalized Severi-Brauer varieties

Décomposabilité motivique des variétés de Severi–Brauer généralisées

Maksim Zhykhovich

Algebraic Geometry

Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, 4, place Jussieu, 75005, Paris, France

Article history: Received 16 June 2010 Accepted after revision 26 July 2010	Let <i>F</i> be an arbitrary field. Let <i>p</i> be a positive prime number and <i>D</i> a central division <i>F</i> -algebra of degree p^n , with $n \ge 1$. We write $SB(p^m, D)$ for the generalized Severi–Brauer variety of right ideals in <i>D</i> of reduced dimension p^m for $m = 0, 1,, n - 1$. We note by
Presented by Christophe Soulé	$M(SB(p^m, D))$ the Chow motive with coefficients in \mathbb{F}_p of the variety $SB(p^m, D)$. It was proven by Nikita Karpenko that this motive is indecomposable for any prime p and $m = 0$ and for $p = 2, m = 1$. We prove decomposability of $M(SB(p^m, D))$ in all the other cases. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
	R É S U M É
	Soient <i>F</i> un corps arbitraire, <i>p</i> un nombre premier positif et <i>D</i> une <i>F</i> -algèbre de division de degré p^n . On écrit $SB(p^m, D)$ pour la variété de Severi–Brauer généralisée des idéaux à droite de dimension réduite p^m , $m = 0, 1,, n - 1$. On note par $M(SB(p^m, D))$ le motif de Chow à coefficients dans \mathbb{F}_p de la variété $SB(p^m, D)$. Il a été demontré par Nikita Karpenko que ce motif est indecomposable pour tout nombre premier <i>p</i> arbitraire et $m = 0$ et pour $p = 2, m = 1$. Nous montrons la décomposabilité de $M(SB(p^m, D))$ dans tous les autres cas. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Chow motives with finite coefficients

Our basic reference for Chow groups and Chow motives (including notations) is [3]. We fix an associative unital commutative ring Λ and for a variety (i.e., a separated scheme of finite type over a field) X we write Ch(X) for its Chow group with coefficients in Λ (while we write CH(X) for its integral Chow group). Our category of motives is the category $CM(F, \Lambda)$ of graded Chow motives with coefficients in Λ , [3, definition of §64]. By a sum of motives we always mean the direct sum. We also write Λ for the motive $M(\text{Spec } F) \in CM(F, \Lambda)$. A Tate motive is the motive of the form $\Lambda(i)$ with i an integer.

Let *X* be a smooth complete variety over *F* and let *M* be a motive. We call *M* split if it is a finite sum of Tate motives. We call *X* split, if its integral motive $M(X) \in CM(F, \mathbb{Z})$ (and therefore the motive of *X* with an arbitrary coefficient ring *A*) is split. We call *M* or *X* geometrically split, if it splits over a field extension of *F*. Over an extension of *F* the geometrically split motive *M* becomes isomorphic to a finite sum of Tate motives. We write rk *M* for the number of the summands in this decomposition (this number do not depend on the choice of the splitting field extension).

We say that X satisfies the nilpotence principle, if for any field extension E/F and any coefficient ring Λ , the kernel of the change of field homomorphism $End(M(X)) \rightarrow End(M(X)_E)$ consists of nilpotents. Any projective homogeneous (under

E-mail address: zhykhovich@math.jussieu.fr.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.07.022

an action of a semisimple affine algebraic group) variety is geometrically split and satisfies the nilpotence principle [3, Theorem 92.4 with Remark 92.3].

A complete decomposition of an object in an additive category is a finite direct sum decomposition with indecomposable summands. We say that the Krull–Schmidt principle holds for a given object of a given additive category, if every direct sum decomposition of the object can be refined to a complete one (in particular, a complete decomposition exists) and there is only one (up to a permutation of the summands) complete decomposition of the object. We have the following theorem:

Theorem 1.1. (See [2, Theorem 3.6 of Chapter I].) Assume that the coefficient ring Λ is finite. The Krull–Schmidt principle holds for any shift of any summand of the motive of any geometrically split F-variety satisfying the nilpotence principle.

Lemma 1.2. Assume that the coefficient ring Λ is finite. Let X be a variety satisfying the nilpotence principle. Let $f \in \text{End}(M(X))$ and $1_E = f_E \in \text{End}(M(X)_E)$ for some field extension E/F. Then $f^n = 1$ for some positive integer n.

Proof. Since *X* satisfies the nilpotence principle, we have $f = 1 + \varepsilon$, where ε is nilpotent. Let *n* be a positive integer such that $\varepsilon^n = 0 = n\varepsilon$. Then $f^{n^n} = (1 + \varepsilon)^{n^n} = 1$ because the binomial coefficients $\binom{n^n}{i}$ for i < n are divisible by *n*. \Box

2. Motivic decomposability of generalized Severi-Brauer varieties

Let *p* be a positive prime integer. The coefficient ring Λ is \mathbb{F}_p in this section. Let *F* be a field. Let *D* be a central division *F*-algebra of degree p^n . We write $SB(p^m, D)$ for the generalized Severi–Brauer variety of right ideals in *D* of reduced dimension p^m for m = 0, 1, ..., n - 1.

Lemma 2.1. Let E/F be a splitting field extension for X = SB(1, D). Then the subgroup of *F*-rational cycles in $Ch_{\dim X}(X_E \times X_E)$ is generated by a diagonal class.

Proof. We write $\overline{Ch}(X)$ for the image of the homomorphism $Ch(X) \to Ch(X_E)$. By [6, Proposition 2.1.1], we have $\overline{Ch}^i(X) = 0$ for i > 0. Since the (say, first) projection $X^2 \to X$ is a projective bundle, we have a (natural with respect to the base field change) isomorphism $Ch_{\dim X}(X^2) \simeq Ch(X)$. Passing to \overline{Ch} , we get an isomorphism $\overline{Ch}_{\dim X}(X^2) \simeq \overline{Ch}(X) = \overline{Ch}^0(X)$ showing that $\dim_{\mathbb{F}_p} \overline{Ch}_{\dim X}(X^2) = 1$. Since the diagonal class in $\overline{Ch}_{\dim X}(X^2)$ is non-zero, it generates all the group. \Box

Corollary 2.2. (*Cf.* [6, Theorem 2.2.1].) The motive with coefficients in \mathbb{F}_p of the Severi–Brauer variety X = SB(1, D) is indecomposable.

Proof. To prove that our motive is indecomposable it is enough to show that $End(M(X)) = Ch_{\dim X}(X \times X)$ does not contain non-trivial projectors. Let $\pi \in Ch_{\dim X}(X \times X)$ be a projector. By Lemma 2.1, π_E is zero or equal to 1_E . Since X satisfies the nilpotence principle, π is nilpotent in the first case, but also idempotent, therefore π is zero. Lemma 1.2 gives us $\pi = 1$ in the second case. \Box

Nikita Karpenko has recently proved the motivic indecomposability of generalized Severi–Brauer varieties also in the case p = 2, m = 1.

Theorem 2.3. (*Cf.* [8, Theorem 4.2].) Let *D* be a central division *F*-algebra of degree 2^n with $n \ge 1$. Then the motive with coefficients in \mathbb{F}_2 of the variety SB(2, *D*) is indecomposable.

Taking into account Corollary 2.2, Theorem 2.3 and the fact that any generalized Severi–Brauer variety $SB(p^m, D)$ is *p*-incompressible [8, Theorem 4.3] (this condition is weaker than motivic indecomposability), one can expect that the Chow motive with coefficients in \mathbb{F}_p of any generalized Severi–Brauer variety $SB(p^m, D)$ is indecomposable. But the following theorem gives us the opposite answer:

Theorem 2.4. Let *D* be a central division *F*-algebra of degree p^n with $n \ge 1$. Then the motive with coefficients in \mathbb{F}_p of the variety $SB(p^m, D)$ is decomposable for p = 2, 1 < m < n and for p > 2, 0 < m < n. In these cases M(SB(1, D))(k) is a summand of $M(SB(p^m, D))$ for $2 \le k \le p^n - p^m$.

Proof. We use the notations: X = SB(1, D), $Y = SB(p^m, D)$, $d = \dim(SB(1, D)) = p^n - 1$, $r = p^n - p^m$. Let E = F(X), then E/F is a splitting field extension for the variety X (and also for Y). We will show that M(X)(k) is a summand of M(Y). By Lemma 1.2 it suffices to construct two F-rational morphisms

 $\alpha: M(X_E)(k) \to M(Y_E)$ and $\beta: M(Y_E) \to M(X_E)(k)$

satisfying $\beta \circ \alpha = 1 \in \text{End}(M(X_E)(k)) = \text{Ch}_d(X_E \times X_E)$. By Lemma 2.1 we can replace condition $\beta \circ \alpha = 1$ by $\beta \circ \alpha \neq 0$.

Let *Tav* be the tautological vector bundle on *X*. The product $X \times Y$ considered over *X* (via the first projection) is isomorphic (as a scheme over *X*) to the Grassmann bundle $G_r(Tav)$ of *r*-dimensional subspaces in *Tav* (cf. [5, Proposition 4.3]). Let *T* be the tautological *r*-dimensional vector bundle on $G_r(Tav)$. Over the field *E* the algebra *D* becomes isomorphic to $\text{End}_E(V)$ for some *E*-vector space *V* of dimension $d+1 = p^n$. We have $X_E \simeq \mathbb{P}^d(V)$ and $Y_E \simeq G_{p^m}(V)$. Let T_1 and T_{p^m} be the tautological bundles of rank 1 and p^m on X_E and Y_E respectively. Then we have an isomorphism (cf. [5, Proposition 4.3]): $T_E \simeq T_1 \boxtimes (-T_{p^m})^{\vee}$ (here we lift the bundles T_1 and T_{p^m} on $X_E \times Y_E$). Let $h = c_1(T_1) \in \text{Ch}^1(X_E)$ (then -h is a hyperplane class in $\text{Ch}^1(X_E)$) and $c_i = c_i((-T_{p^m})^{\vee}) \in \text{Ch}^i(Y_E)$. Then by [4, Remark 3.2.3(b)]

$$c_t(T_E) = c_t (T_1 \boxtimes (-T_{p^m})^{\vee}) = \sum_{i=0}^r (1 + (h \times 1)t)^{r-i} (1 \times c_i)t^i$$

It follows from the conditions of the theorem that the binomial coefficients $\binom{p^n-p^m}{2}$, $\binom{p^n-p^m}{p^m-1}$ are divisible by p and $\binom{p^n-p^m-1}{p^m-2} \equiv (-1)^{p^m-2} \mod p$. Therefore

$$c_1(T_E) = 1 \times c_1, \qquad c_2(T_E) = -h \times c_1 + 1 \times c_2, \qquad c_{p^m - 1}(T_E) = (-1)^{p^m - 2} h^{p^m - 2} \times c_1 + \cdots,$$

where " \cdots " stands for a linear combination of only those terms whose second factor has codimension > 1. For the top Chern class we have: $c_r(T_E) = \sum_{i=0}^r h^{r-i} \times c_i$. Let $\beta_1 = c_r(T_E)c_{p^m-1}(T_E)c_2(T_E)c_1(T_E)^{k-2} = (-h)^d \times c_1^k + \cdots = x \times c_1^k + \cdots$, where " \cdots " stands for a linear combination of only those terms whose second factor has codimension > k and where x is the class of a rational point in $Ch(X_E)$. We take $\beta = \beta_1^t$, where β_1^t is the transpose of β_1 . Since the bundle T is defined over F, the morphism $\beta \in Ch_{\dim Y-k}(Y_E \times X_E) = Hom(M(Y_E), M(X_E)(k))$ is F-rational.

By [4, Example 14.6.6] the cycle c_1^k is non-zero. Let $a \in Ch(Y_E)$ be the element dual to c_1^k with respect to the bilinear form $Ch(Y_E) \times Ch(Y_E) \to \mathbb{F}_p$, $(x_1, x_2) \mapsto \deg(x_1 \cdot x_2)$. The pull-back homomorphism $f : Ch(X \times Y) \to Ch(Y_{F(X)}) = Ch(Y_E)$ with respect to the morphism $Y_{F(X)} = (\text{Spec } F(X)) \times Y \to X \times Y$ given by the generic point of X is surjective by [3, Corollary 57.11]. Let $\alpha' \in Ch(X \times Y)$ be a cycle whose image in $Ch(Y_E)$ under the surjection f is a. We define α as α'_E and we have $\alpha = 1 \times a + \cdots$, where " \cdots " stands for a linear combination of only those elements whose first factor is of positive codimension. It follows that $\beta \circ \alpha \neq 0$. \Box

Remark 2.5. Theorem 2.4 also gives us some information about the integral motive of the variety $SB(p^m, D)$. Indeed, according to [9, Corollary 2.7] the decomposition of $M(SB(p^m, D))$ with coefficients in \mathbb{F}_p lifts (and in a unique way) to the coefficients $\mathbb{Z}/p^N\mathbb{Z}$ for any $N \ge 2$. Then by [9, Theorem 2.16] it lifts to \mathbb{Z} (uniquely for p = 2 and p = 3 and non-uniquely for p > 3). See also Remark 2.8.

Remark 2.6. Let *l* be an integer such that $0 < l < p^n$ and gcd(l, p) = 1. The complete decomposition of the motive M(SB(l, D)) with coefficients in \mathbb{F}_p is described in [1, Proposition 2.4].

Example 2.7. As an application of Theorem 2.4 we describe the complete motivic decomposition of SB(4, D) with coefficients in \mathbb{F}_2 for a division algebra D of degree 8. We denote by M the motive M(SB(1, D)). By Theorem 2.4, the motives M(2), M(3), M(4) and by duality M(7), M(6), M(5) are direct summands of M(SB(4, D)). We have $M(SB(4, D)) = M(2) \oplus \cdots \oplus M(7) \oplus N$ for some motive N. Assume that N is decomposable. Then by [8, Theorem 3.8], and Theorems 2.2, 2.3, the motive N has an indecomposable summand which is some shift of either M or M(SB(2, D)). But the second case is impossible because $70 = \binom{8}{4} = \operatorname{rk} M(SB(4, D)) < 6 \operatorname{rk} M + \operatorname{rk} M(SB(2, D)) = 6 \cdot 8 + \binom{8}{2} = 76$ (see [8, Example 2.18] for the computations of ranks). Therefore M(i) is a summand of N for some integer i. According to [7, Corollary 10.19], we can write the complete decomposition of N over the function field L = F(SB(4, D)):

$$N_L = \mathbb{F}_2 \oplus \widetilde{M}(1) \oplus M(SB(2,C))(4) \oplus M(SB(2,C))(8) \oplus \widetilde{M}(12) \oplus \mathbb{F}_2(16),$$

where *C* is a central division *L*-algebra (of degree 4) Brauer-equivalent to D_L and where $\widetilde{M} = M(SB(1, C))$. It follows from this decomposition that the motive $M(i)_L = \widetilde{M}(i) \oplus \widetilde{M}(i+4)$ cannot be a summand of N_L . We have a contradiction. Therefore the motive *N* is indecomposable and we have a complete motivic decomposition of SB(4, D) with coefficients in \mathbb{F}_2 :

$$M(SB(4, D)) = N \oplus M(2) \oplus M(3) \oplus M(4) \oplus M(5) \oplus M(6) \oplus M(7).$$

$$\tag{1}$$

Remark 2.8. We have the same decomposition as (1) for the integral motive of the variety SB(4, D). To show this one can apply [9, Corollary 2.7] and then [9, Theorem 2.16].

Acknowledgements

I would like to express particular gratitude to Nikita Karpenko, my Ph.D. thesis adviser, for introducing me to the subject, raising the question studied here, and guiding me during this work. I am also very grateful to Olivier Haution and Sergey Tikhonov for very useful discussions.

References

- [1] B. Calmès, V. Petrov, N. Semenov, K. Zainoulline, Chow motives of twisted flag varieties, Compos. Math. 142 (4) (2006) 1063-1080.
- [2] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (3) (2006) 371–386.
- [3] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008.
- [4] W. Fulton, Intersection Theory, second edition, Springer, Berlin, 1998.
- [5] O. Izhboldin, N. Karpenko, Some new examples in the theory of quadratic forms, Math. Z. 234 (2000) 647-695.
- [6] N.A. Karpenko, Grothendieck chow motives of Severi-Brauer varieties, Algebra i Analiz 7 (4) (1995) 196-213.
- [7] N.A. Karpenko, Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i Analiz 12 (1) (2000) 3-69.
- [8] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333 (2009, Apr. 2).
- [9] V. Petrov, N. Semenov, K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup. (4) 41 (2008) 1023-1053.