Motivic decomposability of generalized Severi-Brauer varieties

Décomposabilité motivique des variétés de Severi-Brauer généralisées

Maksim Zhykhovich
Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, 4, place Jussieu, 75005, Paris, France

A R T I C L E IN F O

Article history:

Received 16 June 2010
Accepted after revision 26 July 2010
Presented by Christophe Soulé

Abstract

Let F be an arbitrary field. Let p be a positive prime number and D a central division F-algebra of degree p^{n}, with $n \geqslant 1$. We write $S B\left(p^{m}, D\right)$ for the generalized Severi-Brauer variety of right ideals in D of reduced dimension p^{m} for $m=0,1, \ldots, n-1$. We note by $M\left(S B\left(p^{m}, D\right)\right)$ the Chow motive with coefficients in \mathbb{F}_{p} of the variety $S B\left(p^{m}, D\right)$. It was proven by Nikita Karpenko that this motive is indecomposable for any prime p and $m=0$ and for $p=2, m=1$. We prove decomposability of $M\left(S B\left(p^{m}, D\right)\right)$ in all the other cases. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{RÉS U M É}

Soient F un corps arbitraire, p un nombre premier positif et D une F-algèbre de division de degré p^{n}. On écrit $S B\left(p^{m}, D\right)$ pour la variété de Severi-Brauer généralisée des idéaux à droite de dimension réduite $p^{m}, m=0,1, \ldots, n-1$. On note par $M\left(S B\left(p^{m}, D\right)\right)$ le motif de Chow à coefficients dans \mathbb{F}_{p} de la variété $S B\left(p^{m}, D\right)$. Il a été demontré par Nikita Karpenko que ce motif est indecomposable pour tout nombre premier p arbitraire et $m=0$ et pour $p=2, m=1$. Nous montrons la décomposabilité de $M\left(S B\left(p^{m}, D\right)\right)$ dans tous les autres cas. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Chow motives with finite coefficients

Our basic reference for Chow groups and Chow motives (including notations) is [3]. We fix an associative unital commutative ring Λ and for a variety (i.e., a separated scheme of finite type over a field) X we write $\operatorname{Ch}(X)$ for its Chow group with coefficients in Λ (while we write $\mathrm{CH}(X)$ for its integral Chow group). Our category of motives is the category $\mathrm{CM}(F, \Lambda)$ of graded Chow motives with coefficients in Λ, [3, definition of $\S 64]$. By a sum of motives we always mean the direct sum. We also write Λ for the motive $M(\operatorname{Spec} F) \in \operatorname{CM}(F, \Lambda)$. A Tate motive is the motive of the form $\Lambda(i)$ with i an integer.

Let X be a smooth complete variety over F and let M be a motive. We call M split if it is a finite sum of Tate motives. We call X split, if its integral motive $M(X) \in \operatorname{CM}(F, \mathbb{Z})$ (and therefore the motive of X with an arbitrary coefficient ring Λ) is split. We call M or X geometrically split, if it splits over a field extension of F. Over an extension of F the geometrically split motive M becomes isomorphic to a finite sum of Tate motives. We write rk M for the number of the summands in this decomposition (this number do not depend on the choice of the splitting field extension).

We say that X satisfies the nilpotence principle, if for any field extension E / F and any coefficient ring Λ, the kernel of the change of field homomorphism $\operatorname{End}(M(X)) \rightarrow \operatorname{End}\left(M(X)_{E}\right)$ consists of nilpotents. Any projective homogeneous (under

[^0]an action of a semisimple affine algebraic group) variety is geometrically split and satisfies the nilpotence principle [3, Theorem 92.4 with Remark 92.3].

A complete decomposition of an object in an additive category is a finite direct sum decomposition with indecomposable summands. We say that the Krull-Schmidt principle holds for a given object of a given additive category, if every direct sum decomposition of the object can be refined to a complete one (in particular, a complete decomposition exists) and there is only one (up to a permutation of the summands) complete decomposition of the object. We have the following theorem:

Theorem 1.1. (See [2, Theorem 3.6 of Chapter I].) Assume that the coefficient ring Λ is finite. The Krull-Schmidt principle holds for any shift of any summand of the motive of any geometrically split F-variety satisfying the nilpotence principle.

Lemma 1.2. Assume that the coefficient ring Λ is finite. Let X be a variety satisfying the nilpotence principle. Let $f \in \operatorname{End}(M(X))$ and $1_{E}=f_{E} \in \operatorname{End}\left(M(X)_{E}\right)$ for some field extension E / F. Then $f^{n}=1$ for some positive integer n.

Proof. Since X satisfies the nilpotence principle, we have $f=1+\varepsilon$, where ε is nilpotent. Let n be a positive integer such that $\varepsilon^{n}=0=n \varepsilon$. Then $f^{n^{n}}=(1+\varepsilon)^{n^{n}}=1$ because the binomial coefficients $\binom{n^{n}}{i}$ for $i<n$ are divisible by n.

2. Motivic decomposability of generalized Severi-Brauer varieties

Let p be a positive prime integer. The coefficient ring Λ is \mathbb{F}_{p} in this section. Let F be a field. Let D be a central division F-algebra of degree p^{n}. We write $S B\left(p^{m}, D\right)$ for the generalized Severi-Brauer variety of right ideals in D of reduced dimension p^{m} for $m=0,1, \ldots, n-1$.

Lemma 2.1. Let E / F be a splitting field extension for $X=S B(1, D)$. Then the subgroup of F-rational cycles in $\mathrm{Ch}_{\operatorname{dim} X}\left(X_{E} \times X_{E}\right)$ is generated by a diagonal class.

Proof. We write $\overline{\mathrm{Ch}}(X)$ for the image of the homomorphism $\mathrm{Ch}(X) \rightarrow \mathrm{Ch}\left(X_{E}\right)$. By [6, Proposition 2.1.1], we have $\overline{\mathrm{Ch}}^{i}(X)=0$ for $i>0$. Since the (say, first) projection $X^{2} \rightarrow X$ is a projective bundle, we have a (natural with respect to the base field change) isomorphism $\mathrm{Ch}_{\mathrm{dim} X}\left(X^{2}\right) \simeq \mathrm{Ch}(X)$. Passing to $\overline{\mathrm{Ch}}$, we get an isomorphism $\overline{\mathrm{Ch}}_{\mathrm{dim} X}\left(X^{2}\right) \simeq \overline{\mathrm{Ch}}(X)=\overline{\mathrm{Ch}}^{0}(X)$ showing that $\operatorname{dim}_{\mathbb{F}_{p}} \overline{\mathrm{Ch}}_{\operatorname{dim} X}\left(X^{2}\right)=1$. Since the diagonal class in $\overline{\mathrm{Ch}}_{\operatorname{dim} X}\left(X^{2}\right)$ is non-zero, it generates all the group.

Corollary 2.2. (Cf. [6, Theorem 2.2.1].) The motive with coefficients in \mathbb{F}_{p} of the Severi-Brauer variety $X=S B(1, D)$ is indecomposable.
Proof. To prove that our motive is indecomposable it is enough to show that $\operatorname{End}(M(X))=\mathrm{Ch}_{\operatorname{dim} X}(X \times X)$ does not contain non-trivial projectors. Let $\pi \in \mathrm{Ch}_{\operatorname{dim} X}(X \times X)$ be a projector. By Lemma 2.1 , π_{E} is zero or equal to 1_{E}. Since X satisfies the nilpotence principle, π is nilpotent in the first case, but also idempotent, therefore π is zero. Lemma 1.2 gives us $\pi=1$ in the second case.

Nikita Karpenko has recently proved the motivic indecomposability of generalized Severi-Brauer varieties also in the case $p=2, m=1$.

Theorem 2.3. (Cf. [8, Theorem 4.2].) Let D be a central division F-algebra of degree 2^{n} with $n \geqslant 1$. Then the motive with coefficients in \mathbb{F}_{2} of the variety $S B(2, D)$ is indecomposable.

Taking into account Corollary 2.2, Theorem 2.3 and the fact that any generalized Severi-Brauer variety $S B\left(p^{m}, D\right)$ is p incompressible [8, Theorem 4.3] (this condition is weaker than motivic indecomposability), one can expect that the Chow motive with coefficients in \mathbb{F}_{p} of any generalized Severi-Brauer variety $\operatorname{SB}\left(p^{m}, D\right)$ is indecomposable. But the following theorem gives us the opposite answer:

Theorem 2.4. Let D be a central division F-algebra of degree p^{n} with $n \geqslant 1$. Then the motive with coefficients in \mathbb{F}_{p} of the variety $S B\left(p^{m}, D\right)$ is decomposable for $p=2,1<m<n$ and for $p>2,0<m<n$. In these cases $M(S B(1, D))(k)$ is a summand of $M\left(S B\left(p^{m}, D\right)\right.$ for $2 \leqslant k \leqslant p^{n}-p^{m}$.

Proof. We use the notations: $X=S B(1, D), Y=S B\left(p^{m}, D\right), d=\operatorname{dim}(S B(1, D))=p^{n}-1, r=p^{n}-p^{m}$. Let $E=F(X)$, then E / F is a splitting field extension for the variety X (and also for Y). We will show that $M(X)(k)$ is a summand of $M(Y)$. By Lemma 1.2 it suffices to construct two F-rational morphisms

$$
\alpha: M\left(X_{E}\right)(k) \rightarrow M\left(Y_{E}\right) \quad \text { and } \quad \beta: M\left(Y_{E}\right) \rightarrow M\left(X_{E}\right)(k)
$$

satisfying $\beta \circ \alpha=1 \in \operatorname{End}\left(M\left(X_{E}\right)(k)\right)=\mathrm{Ch}_{d}\left(X_{E} \times X_{E}\right)$. By Lemma 2.1 we can replace condition $\beta \circ \alpha=1$ by $\beta \circ \alpha \neq 0$.

Let Tav be the tautological vector bundle on X. The product $X \times Y$ considered over X (via the first projection) is isomorphic (as a scheme over X) to the Grassmann bundle $G_{r}(T a v)$ of r-dimensional subspaces in Tav (cf. [5, Proposition 4.3]). Let T be the tautological r-dimensional vector bundle on $G_{r}(T a v)$. Over the field E the algebra D becomes isomorphic to $\operatorname{End}_{E}(V)$ for some E-vector space V of dimension $d+1=p^{n}$. We have $X_{E} \simeq \mathbb{P}^{d}(V)$ and $Y_{E} \simeq G_{p^{m}}(V)$. Let T_{1} and $T_{p^{m}}$ be the tautological bundles of rank 1 and p^{m} on X_{E} and Y_{E} respectively. Then we have an isomorphism (cf. [5, Proposition 4.3]): $T_{E} \simeq T_{1} \boxtimes\left(-T_{p^{m}}\right)^{\vee}$ (here we lift the bundles T_{1} and $T_{p^{m}}$ on $X_{E} \times Y_{E}$). Let $h=c_{1}\left(T_{1}\right) \in \mathrm{Ch}^{1}\left(X_{E}\right)$ (then $-h$ is a hyperplane class in $\left.\mathrm{Ch}^{1}\left(X_{E}\right)\right)$ and $c_{i}=c_{i}\left(\left(-T_{p^{m}}\right)^{\vee}\right) \in \mathrm{Ch}^{i}\left(Y_{E}\right)$. Then by [4, Remark 3.2.3(b)]

$$
c_{t}\left(T_{E}\right)=c_{t}\left(T_{1} \boxtimes\left(-T_{p^{m}}\right)^{\vee}\right)=\sum_{i=0}^{r}(1+(h \times 1) t)^{r-i}\left(1 \times c_{i}\right) t^{i}
$$

It follows from the conditions of the theorem that the binomial coefficients $\binom{p^{n}-p^{m}}{2},\binom{p^{n}-p^{m}}{p^{m}-1}$ are divisible by p and $\binom{p^{n}-p^{m}-1}{p^{m}-2} \equiv(-1)^{p^{m}-2} \bmod p$. Therefore

$$
c_{1}\left(T_{E}\right)=1 \times c_{1}, \quad c_{2}\left(T_{E}\right)=-h \times c_{1}+1 \times c_{2}, \quad c_{p^{m}-1}\left(T_{E}\right)=(-1)^{p^{m}-2} h^{p^{m}-2} \times c_{1}+\cdots,
$$

where "..." stands for a linear combination of only those terms whose second factor has codimension >1. For the top Chern class we have: $c_{r}\left(T_{E}\right)=\sum_{i=0}^{r} h^{r-i} \times c_{i}$. Let $\beta_{1}=c_{r}\left(T_{E}\right) c_{p^{m}-1}\left(T_{E}\right) c_{2}\left(T_{E}\right) c_{1}\left(T_{E}\right)^{k-2}=(-h)^{d} \times c_{1}^{k}+\cdots=x \times c_{1}^{k}+\cdots$, where "..." stands for a linear combination of only those terms whose second factor has codimension $>k$ and where x is the class of a rational point in $\operatorname{Ch}\left(X_{E}\right)$. We take $\beta=\beta_{1}^{t}$, where β_{1}^{t} is the transpose of β_{1}. Since the bundle T is defined over F, the morphism $\beta \in \operatorname{Ch}_{\operatorname{dim} Y-k}\left(Y_{E} \times X_{E}\right)=\operatorname{Hom}\left(M\left(Y_{E}\right), M\left(X_{E}\right)(k)\right)$ is F-rational.

By [4, Example 14.6.6] the cycle c_{1}^{k} is non-zero. Let $a \in \operatorname{Ch}\left(Y_{E}\right)$ be the element dual to c_{1}^{k} with respect to the bilinear form $\mathrm{Ch}\left(Y_{E}\right) \times \operatorname{Ch}\left(Y_{E}\right) \rightarrow \mathbb{F}_{p},\left(x_{1}, x_{2}\right) \mapsto \operatorname{deg}\left(x_{1} \cdot x_{2}\right)$. The pull-back homomorphism $f: \operatorname{Ch}(X \times Y) \rightarrow \operatorname{Ch}\left(Y_{F(X)}\right)=\operatorname{Ch}\left(Y_{E}\right)$ with respect to the morphism $Y_{F(X)}=(\operatorname{Spec} F(X)) \times Y \rightarrow X \times Y$ given by the generic point of X is surjective by [3, Corollary 57.11]. Let $\alpha^{\prime} \in \operatorname{Ch}(X \times Y)$ be a cycle whose image in $\operatorname{Ch}\left(Y_{E}\right)$ under the surjection f is a. We define α as α_{E}^{\prime} and we have $\alpha=1 \times a+\cdots$, where "..." stands for a linear combination of only those elements whose first factor is of positive codimension and where $1=\left[X_{E}\right]$. Then $\beta \circ \alpha=1 \times x+\cdots$, where "..." stands for a linear combination of only those terms whose first factor is of positive codimension. It follows that $\beta \circ \alpha \neq 0$.

Remark 2.5. Theorem 2.4 also gives us some information about the integral motive of the variety $S B\left(p^{m}, D\right)$. Indeed, according to [9, Corollary 2.7] the decomposition of $M\left(S B\left(p^{m}, D\right)\right)$ with coefficients in \mathbb{F}_{p} lifts (and in a unique way) to the coefficients $\mathbb{Z} / p^{N} \mathbb{Z}$ for any $N \geqslant 2$. Then by [9, Theorem 2.16] it lifts to \mathbb{Z} (uniquely for $p=2$ and $p=3$ and non-uniquely for $p>3$). See also Remark 2.8.

Remark 2.6. Let l be an integer such that $0<l<p^{n}$ and $\operatorname{gcd}(l, p)=1$. The complete decomposition of the motive $M(S B(l, D))$ with coefficients in \mathbb{F}_{p} is described in [1, Proposition 2.4].

Example 2.7. As an application of Theorem 2.4 we describe the complete motivic decomposition of $S B(4, D)$ with coefficients in \mathbb{F}_{2} for a division algebra D of degree 8 . We denote by M the motive $M(S B(1, D)$). By Theorem 2.4, the motives $M(2)$, $M(3), M(4)$ and by duality $M(7), M(6), M(5)$ are direct summands of $M(S B(4, D))$. We have $M(S B(4, D))=M(2) \oplus \cdots \oplus$ $M(7) \oplus N$ for some motive N. Assume that N is decomposable. Then by [8, Theorem 3.8], and Theorems 2.2, 2.3, the motive N has an indecomposable summand which is some shift of either M or $M(S B(2, D)$. But the second case is impossible because $70=\binom{8}{4}=\operatorname{rk} M(S B(4, D))<6 \operatorname{rk} M+\operatorname{rk} M(S B(2, D))=6 \cdot 8+\binom{8}{2}=76$ (see [8, Example 2.18] for the computations of ranks). Therefore $M(i)$ is a summand of N for some integer i. According to [7, Corollary 10.19], we can write the complete decomposition of N over the function field $L=F(S B(4, D))$:

$$
N_{L}=\mathbb{F}_{2} \oplus \tilde{M}(1) \oplus M(S B(2, C))(4) \oplus M(S B(2, C))(8) \oplus \tilde{M}(12) \oplus \mathbb{F}_{2}(16)
$$

where C is a central division L-algebra (of degree ${\underset{\sim}{\sim}}_{\text {) }}$ Brauer-equivalent to D_{L} and where $\widetilde{M}=M(S B(1, C))$. It follows from this decomposition that the motive $M(i)_{L}=\widetilde{M}(i) \oplus \widetilde{M}(i+4)$ cannot be a summand of N_{L}. We have a contradiction. Therefore the motive N is indecomposable and we have a complete motivic decomposition of $S B(4, D)$ with coefficients in \mathbb{F}_{2} :

$$
\begin{equation*}
M(S B(4, D))=N \oplus M(2) \oplus M(3) \oplus M(4) \oplus M(5) \oplus M(6) \oplus M(7) \tag{1}
\end{equation*}
$$

Remark 2.8. We have the same decomposition as (1) for the integral motive of the variety $S B(4, D)$. To show this one can apply [9, Corollary 2.7] and then [9, Theorem 2.16].

Acknowledgements

I would like to express particular gratitude to Nikita Karpenko, my Ph.D. thesis adviser, for introducing me to the subject, raising the question studied here, and guiding me during this work. I am also very grateful to Olivier Haution and Sergey Tikhonov for very useful discussions.

References

[1] B. Calmès, V. Petrov, N. Semenov, K. Zainoulline, Chow motives of twisted flag varieties, Compos. Math. 142 (4) (2006) 1063-1080.
[2] V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (3) (2006) 371-386.
[3] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008.
[4] W. Fulton, Intersection Theory, second edition, Springer, Berlin, 1998.
[5] O. Izhboldin, N. Karpenko, Some new examples in the theory of quadratic forms, Math. Z. 234 (2000) 647-695.
[6] N.A. Karpenko, Grothendieck chow motives of Severi-Brauer varieties, Algebra i Analiz 7 (4) (1995) 196-213.
[7] N.A. Karpenko, Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i Analiz 12 (1) (2000) 3-69.
[8] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333 (2009, Apr. 2).
[9] V. Petrov, N. Semenov, K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup. (4) 41 (2008) 1023-1053.

[^0]: E-mail address: zhykhovich@math.jussieu.fr.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2010.07.022

