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Let F be an arbitrary field. Let p be a positive prime number and D a central division
F -algebra of degree pn , with n � 1. We write SB(pm, D) for the generalized Severi–Brauer
variety of right ideals in D of reduced dimension pm for m = 0,1, . . . ,n − 1. We note by
M(SB(pm, D)) the Chow motive with coefficients in Fp of the variety SB(pm, D). It was
proven by Nikita Karpenko that this motive is indecomposable for any prime p and m = 0
and for p = 2, m = 1. We prove decomposability of M(SB(pm, D)) in all the other cases.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient F un corps arbitraire, p un nombre premier positif et D une F -algèbre de division
de degré pn . On écrit SB(pm, D) pour la variété de Severi–Brauer généralisée des idéaux à
droite de dimension réduite pm , m = 0,1, . . . ,n − 1. On note par M(SB(pm, D)) le motif de
Chow à coefficients dans Fp de la variété SB(pm, D). Il a été demontré par Nikita Karpenko
que ce motif est indecomposable pour tout nombre premier p arbitraire et m = 0 et pour
p = 2, m = 1. Nous montrons la décomposabilité de M(SB(pm, D)) dans tous les autres cas.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Chow motives with finite coefficients

Our basic reference for Chow groups and Chow motives (including notations) is [3]. We fix an associative unital commu-
tative ring Λ and for a variety (i.e., a separated scheme of finite type over a field) X we write Ch(X) for its Chow group
with coefficients in Λ (while we write CH(X) for its integral Chow group). Our category of motives is the category CM(F ,Λ)

of graded Chow motives with coefficients in Λ, [3, definition of §64]. By a sum of motives we always mean the direct sum.
We also write Λ for the motive M(Spec F ) ∈ CM(F ,Λ). A Tate motive is the motive of the form Λ(i) with i an integer.

Let X be a smooth complete variety over F and let M be a motive. We call M split if it is a finite sum of Tate motives.
We call X split, if its integral motive M(X) ∈ CM(F ,Z) (and therefore the motive of X with an arbitrary coefficient ring Λ)
is split. We call M or X geometrically split, if it splits over a field extension of F . Over an extension of F the geometrically
split motive M becomes isomorphic to a finite sum of Tate motives. We write rk M for the number of the summands in this
decomposition (this number do not depend on the choice of the splitting field extension).

We say that X satisfies the nilpotence principle, if for any field extension E/F and any coefficient ring Λ, the kernel of
the change of field homomorphism End(M(X)) → End(M(X)E ) consists of nilpotents. Any projective homogeneous (under
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an action of a semisimple affine algebraic group) variety is geometrically split and satisfies the nilpotence principle [3,
Theorem 92.4 with Remark 92.3].

A complete decomposition of an object in an additive category is a finite direct sum decomposition with indecomposable
summands. We say that the Krull–Schmidt principle holds for a given object of a given additive category, if every direct sum
decomposition of the object can be refined to a complete one (in particular, a complete decomposition exists) and there is
only one (up to a permutation of the summands) complete decomposition of the object. We have the following theorem:

Theorem 1.1. (See [2, Theorem 3.6 of Chapter I].) Assume that the coefficient ring Λ is finite. The Krull–Schmidt principle holds for any
shift of any summand of the motive of any geometrically split F -variety satisfying the nilpotence principle.

Lemma 1.2. Assume that the coefficient ring Λ is finite. Let X be a variety satisfying the nilpotence principle. Let f ∈ End(M(X)) and
1E = f E ∈ End(M(X)E ) for some field extension E/F . Then f n = 1 for some positive integer n.

Proof. Since X satisfies the nilpotence principle, we have f = 1 + ε, where ε is nilpotent. Let n be a positive integer such
that εn = 0 = nε. Then f nn = (1 + ε)nn = 1 because the binomial coefficients

(nn

i

)
for i < n are divisible by n. �

2. Motivic decomposability of generalized Severi–Brauer varieties

Let p be a positive prime integer. The coefficient ring Λ is Fp in this section. Let F be a field. Let D be a central
division F -algebra of degree pn . We write SB(pm, D) for the generalized Severi–Brauer variety of right ideals in D of reduced
dimension pm for m = 0,1, . . . ,n − 1.

Lemma 2.1. Let E/F be a splitting field extension for X = SB(1, D). Then the subgroup of F -rational cycles in Chdim X (XE × XE) is
generated by a diagonal class.

Proof. We write Ch(X) for the image of the homomorphism Ch(X) → Ch(XE). By [6, Proposition 2.1.1], we have Chi(X) = 0
for i > 0. Since the (say, first) projection X2 → X is a projective bundle, we have a (natural with respect to the base field
change) isomorphism Chdim X (X2) � Ch(X). Passing to Ch, we get an isomorphism Chdim X (X2) � Ch(X) = Ch0(X) showing
that dimFp Chdim X (X2) = 1. Since the diagonal class in Chdim X (X2) is non-zero, it generates all the group. �
Corollary 2.2. (Cf. [6, Theorem 2.2.1].) The motive with coefficients in Fp of the Severi–Brauer variety X = SB(1, D) is indecomposable.

Proof. To prove that our motive is indecomposable it is enough to show that End(M(X)) = Chdim X (X × X) does not contain
non-trivial projectors. Let π ∈ Chdim X (X × X) be a projector. By Lemma 2.1, πE is zero or equal to 1E . Since X satisfies the
nilpotence principle, π is nilpotent in the first case, but also idempotent, therefore π is zero. Lemma 1.2 gives us π = 1 in
the second case. �

Nikita Karpenko has recently proved the motivic indecomposability of generalized Severi–Brauer varieties also in the case
p = 2, m = 1.

Theorem 2.3. (Cf. [8, Theorem 4.2].) Let D be a central division F -algebra of degree 2n with n � 1. Then the motive with coefficients
in F2 of the variety SB(2, D) is indecomposable.

Taking into account Corollary 2.2, Theorem 2.3 and the fact that any generalized Severi–Brauer variety SB(pm, D) is p-
incompressible [8, Theorem 4.3] (this condition is weaker than motivic indecomposability), one can expect that the Chow
motive with coefficients in Fp of any generalized Severi–Brauer variety SB(pm, D) is indecomposable. But the following
theorem gives us the opposite answer:

Theorem 2.4. Let D be a central division F -algebra of degree pn with n � 1. Then the motive with coefficients in Fp of the vari-
ety SB(pm, D) is decomposable for p = 2, 1 < m < n and for p > 2, 0 < m < n. In these cases M(SB(1, D))(k) is a summand of
M(SB(pm, D)) for 2 � k � pn − pm.

Proof. We use the notations: X = SB(1, D), Y = SB(pm, D), d = dim(SB(1, D)) = pn − 1, r = pn − pm . Let E = F (X), then
E/F is a splitting field extension for the variety X (and also for Y ). We will show that M(X)(k) is a summand of M(Y ). By
Lemma 1.2 it suffices to construct two F -rational morphisms

α : M(XE)(k) → M(Y E) and β : M(Y E) → M(XE)(k)

satisfying β ◦ α = 1 ∈ End(M(XE )(k)) = Chd(XE × XE). By Lemma 2.1 we can replace condition β ◦ α = 1 by β ◦ α �= 0.
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Let Tav be the tautological vector bundle on X . The product X × Y considered over X (via the first projection) is iso-
morphic (as a scheme over X ) to the Grassmann bundle Gr(Tav) of r-dimensional subspaces in Tav (cf. [5, Proposition 4.3]).
Let T be the tautological r-dimensional vector bundle on Gr(Tav). Over the field E the algebra D becomes isomorphic to
EndE (V ) for some E-vector space V of dimension d+1 = pn . We have XE � P

d(V ) and Y E � G pm (V ). Let T1 and T pm be the
tautological bundles of rank 1 and pm on XE and Y E respectively. Then we have an isomorphism (cf. [5, Proposition 4.3]):
T E � T1 � (−T pm )∨ (here we lift the bundles T1 and T pm on XE × Y E ). Let h = c1(T1) ∈ Ch1(XE) (then −h is a hyperplane
class in Ch1(XE)) and ci = ci((−T pm )∨) ∈ Chi(Y E ). Then by [4, Remark 3.2.3(b)]

ct(T E) = ct
(
T1 � (−T pm )∨

) =
r∑

i=0

(
1 + (h × 1)t

)r−i
(1 × ci)t

i .

It follows from the conditions of the theorem that the binomial coefficients
(pn−pm

2

)
,
(pn−pm

pm−1

)
are divisible by p and(pn−pm−1

pm−2

) ≡ (−1)pm−2 mod p. Therefore

c1(T E) = 1 × c1, c2(T E) = −h × c1 + 1 × c2, cpm−1(T E) = (−1)pm−2hpm−2 × c1 + · · · ,
where “· · ·” stands for a linear combination of only those terms whose second factor has codimension > 1. For the top
Chern class we have: cr(T E ) = ∑r

i=0 hr−i × ci . Let β1 = cr(T E )cpm−1(T E )c2(T E )c1(T E )k−2 = (−h)d × ck
1 + · · · = x × ck

1 + · · · ,
where “· · ·” stands for a linear combination of only those terms whose second factor has codimension > k and where x is
the class of a rational point in Ch(XE). We take β = βt

1, where βt
1 is the transpose of β1. Since the bundle T is defined

over F , the morphism β ∈ Chdim Y −k(Y E × XE) = Hom(M(Y E ), M(XE)(k)) is F -rational.
By [4, Example 14.6.6] the cycle ck

1 is non-zero. Let a ∈ Ch(Y E ) be the element dual to ck
1 with respect to the bilinear

form Ch(Y E ) × Ch(Y E ) → Fp , (x1, x2) 	→ deg(x1 · x2). The pull-back homomorphism f : Ch(X × Y ) → Ch(Y F (X)) = Ch(Y E )

with respect to the morphism Y F (X) = (Spec F (X)) × Y → X × Y given by the generic point of X is surjective by [3, Corol-
lary 57.11]. Let α′ ∈ Ch(X × Y ) be a cycle whose image in Ch(Y E ) under the surjection f is a. We define α as α′

E and we
have α = 1 × a + · · · , where “· · ·” stands for a linear combination of only those elements whose first factor is of positive
codimension and where 1 = [XE ]. Then β ◦ α = 1 × x + · · · , where “· · ·” stands for a linear combination of only those terms
whose first factor is of positive codimension. It follows that β ◦ α �= 0. �
Remark 2.5. Theorem 2.4 also gives us some information about the integral motive of the variety SB(pm, D). Indeed, ac-
cording to [9, Corollary 2.7] the decomposition of M(SB(pm, D)) with coefficients in Fp lifts (and in a unique way) to the
coefficients Z/pN

Z for any N � 2. Then by [9, Theorem 2.16] it lifts to Z (uniquely for p = 2 and p = 3 and non-uniquely
for p > 3). See also Remark 2.8.

Remark 2.6. Let l be an integer such that 0 < l < pn and gcd(l, p) = 1. The complete decomposition of the motive M(SB(l, D))

with coefficients in Fp is described in [1, Proposition 2.4].

Example 2.7. As an application of Theorem 2.4 we describe the complete motivic decomposition of SB(4, D) with coefficients
in F2 for a division algebra D of degree 8. We denote by M the motive M(SB(1, D)). By Theorem 2.4, the motives M(2),
M(3), M(4) and by duality M(7), M(6), M(5) are direct summands of M(SB(4, D)). We have M(SB(4, D)) = M(2) ⊕ · · · ⊕
M(7)⊕ N for some motive N . Assume that N is decomposable. Then by [8, Theorem 3.8], and Theorems 2.2, 2.3, the motive
N has an indecomposable summand which is some shift of either M or M(SB(2, D)). But the second case is impossible
because 70 = (8

4

) = rk M(SB(4, D)) < 6 rk M + rk M(SB(2, D)) = 6 · 8 + (8
2

) = 76 (see [8, Example 2.18] for the computations of
ranks). Therefore M(i) is a summand of N for some integer i. According to [7, Corollary 10.19], we can write the complete
decomposition of N over the function field L = F (SB(4, D)):

NL = F2 ⊕ M̃(1) ⊕ M
(
SB(2, C)

)
(4) ⊕ M

(
SB(2, C)

)
(8) ⊕ M̃(12) ⊕ F2(16),

where C is a central division L-algebra (of degree 4) Brauer-equivalent to DL and where M̃ = M(SB(1, C)). It follows from
this decomposition that the motive M(i)L = M̃(i)⊕ M̃(i +4) cannot be a summand of NL . We have a contradiction. Therefore
the motive N is indecomposable and we have a complete motivic decomposition of SB(4, D) with coefficients in F2:

M
(
SB(4, D)

) = N ⊕ M(2) ⊕ M(3) ⊕ M(4) ⊕ M(5) ⊕ M(6) ⊕ M(7). (1)

Remark 2.8. We have the same decomposition as (1) for the integral motive of the variety SB(4, D). To show this one can
apply [9, Corollary 2.7] and then [9, Theorem 2.16].
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