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We treat the existence and uniqueness of reproductive solution (weak time-periodic
solution) of a second-grade fluid system for small enough source terms, by using the
Galerkin approximation method and compactness arguments.
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r é s u m é

On traite l’existence et l’unicité de la solution reproductive d’un système de fluide
de grade deux avec des termes sources suffisamments petits, en utilisant la méthode
d’approximation de Galerkin et des arguments de compacité.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

On considère l’existence et l’unicité de la solution reproductive d’un système de fluide de grade deux (3) avec des termes
sources suffisamments petits, en utilisant la méthode d’approximations de Galerkin et des arguments de compacité. En fait,
d’abord nous montrons qu’il existe une suite (um(t)) des approximations de Galerkin qui vérifient um(0) = um(T ). Ensuite,
par des arguments de compacité, nous démontrons que la suite d’approximations de Galerkin converge vers une solution
reproductive du système (3). Finalement, l’unicité de la solution (petite) est démontrée. Nous donnons le résultat principal
de cette Note :

Théorème 0.1. Soit T > 0 et Ω ⊆ R
3 un ouvert borné de classe C3,1 . Si ‖f‖L∞(0,T ;L2(Ω)) et ‖ curl f‖L∞(0,T ;L2(Ω)) sont suffisamments

petits, il existe une unique solution reproductive u ∈ L∞(0, T ;H3(Ω)) du système (3).

1. Introduction

We consider an incompressible non-Newtonian flow of grade two in a bounded three-dimensional domain Ω and a fixed
time interval (0, T ). From a mathematical point of view, if u : Ω×]0, T [→ R

3 and p : Ω×]0, T [→ R are the velocity and
pressure respectively, the initial–boundary problem for an incompressible fluid of grade two is given by
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⎧⎨
⎩

∂

∂t
(u − α�u) − ν�u + curl(u − α�u) × u + ∇q = f in Ω×]0, T [,

div u = 0 in Ω×]0, T [, u = 0 on ∂Ω×]0, T [, u(0) = u0 in Ω.

(1)

Here, ν > 0 represents the kinematic viscosity and f the external forces and q is a potential function given by q = p −
α(u · �u + 1

4 |Du|2) − 1
2 u · u, where (Du)i j = ∂ jui + ∂iu j is the linear strain tensor. Moreover, α > 0 is a constant related

to the non-Newtonian behavior of the fluid. Note that (1) generalizes the Navier–Stokes equations since it reduces to them
when α = 0.

The study of this kind of fluids was initiated by Dunn and Fosdick in [3] and by Fosdick and Rajapogal in [4]. The
first successful mathematical analysis of (1) was done by Cioranescu and Ouazar in [2]. Another work is due to Galdi and
Sequeira [5], where the authors obtain some existence results.

Later, Cioranescu and Girault in [1] established existence, uniqueness and regularity of a global weak solution of (1) under
hypotheses either of small data f and u0 or on small enough time intervals for arbitrary data. The existence is obtained
by applying Galerkin’s method associated to an adequate spectral basis, such that the Galerkin solution also satisfies the
variational formulation corresponding to the following vorticity equation for w = curl(u − α�u) (see (7) below):

∂

∂t
w − ν� curl u + (u · ∇)w − (w · ∇)u = curl f. (2)

Following the ideas given in [1] and [2], we will prove the existence of reproductive solutions in (0, T ) for a Second-
Grade fluid system, when f is small enough. More precisely we seek solutions of the system:

⎧⎨
⎩

∂

∂t
(u − α�u) − ν�u + curl(u − α�u) × u + ∇q = f in Ω×]0, T [,

div u = 0 in Ω×]0, T [, u = 0 on ∂Ω×]0, T [, u(0) = u(T ) inΩ,

(3)

where the usual initial condition u(0) = u0 has been changed by the time-periodic condition u(0) = u(T ). Here, we assume
that f depends on the time t (notice that if f does not depend on t , any steady-state solution of the Second-Grade fluid is
actually a reproductive solution).

2. Preliminaries

In this section, we introduce the adequate notations and spaces in order to solve system (3). For more details, we refer
to [6] and [7]. Let Ω be a simply-connected bounded domain of R

3 with boundary ∂Ω of class C 3,1. In what follows, spaces
in bold face represent spaces of three-dimensional vector functions. We define the Hilbert spaces H and V in the following
manner:

H = {
v ∈ L2(Ω): div v = 0, v · n = 0 on ∂Ω

}
, V = {

v ∈ H1(Ω): div v = 0, v = 0, on ∂Ω
}
.

For a fixed α ∈ R
+ , we introduce the space V2 = {v ∈ V: curl(v − α�v) ∈ L2(Ω)} equipped with the scalar product

(u,v)V 2 = (u,v) + α(∇u,∇v) + (
curl(u − α�u), curl(v − α�v)

)
.

Hereafter (·,·) denotes the usual inner product in L2(Ω). In the next lemma it is proved that the semi-norm ‖ curl(v −
α�v)‖L2(Ω) is in fact a norm in V2 equivalent to the H3-norm.

Lemma 2.1. (See [1, p. 320].) Let Ω be a bounded, simply-connected open set of R
3 with a boundary of class C 2,1 . Then any v ∈ V2

belongs to H3(Ω) and there exists a constant C(α) such that

‖v‖H3(Ω) � C(α)
∥∥curl(v − α�v)

∥∥
L2(Ω)

, ∀v ∈ V2.

An easy but tedious computation gives us the following equality:

(
curl(u − α�u) × u,v

) = b(u;u,v) − α b(u;�u,v) + α b(v;�u,u)

where b(u;v,w) = ((u · ∇)v,w). From this, the variational formulation of the problem (3) is the following:
Given f ∈ L∞(0, T ;L2(Ω)) with curl f ∈ L∞(0, T ;L2(Ω)), find u ∈ L∞(0, T ;V2) with u′ ∈ L∞(0, T ;V) (u′ denotes the time

derivative of u) such that

(
u′,v

) + α
(∇u′,∇v

) + ν(∇u,∇v) + b(u;u,v) − α b(u;�u,v) + αb(v;�u,u) = (f,v), ∀v ∈ V, (4)

jointly with the time-periodic condition u(0) = u(T ).
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3. Reproductive solution

By following the ideas given in [1,2] we consider the basis {v j} j∈N furnished by the eigenfunctions of the problem:

v j ∈ V2, (v j,v)V 2 = λ j
{
(v j,v) + α(∇v j,∇v)

}
, ∀v ∈ V2, ∀ j ∈ N. (5)

Lemma 3.1. (See [1, p. 326].) Let Ω be a bounded simply-connected open set of R
3 with a boundary of class C 3,1 . Then the eigenfunc-

tions of problem (5) belong to H4(Ω).

For every m ∈ N, we define Vm the vector space spanned by the first m eigenfunctions {v1,v2, . . . ,vm} and by Pm the
orthogonal projection on Vm with respect to the scalar product in V2. In order to construct a periodic solution of the
problem (3), we start considering Galerkin approximations with generic initial data, afterwards we will find reproductive
Galerkin solutions and finally the existence of reproductive solutions of (3) is proved by a limit process.

Indeed, for j ∈ {1,2, . . . ,m} we consider um(t) = ∑m
j=1 cm

j (t)v j solution of the initial-valued problem

⎧⎪⎨
⎪⎩

(
u′

m(t),v j
) + α

(∇u′
m(t),∇v j

) + ν
(∇um(t),∇v j

) + b
(
um(t);um(t),v j

)
,

−αb
(
um(t);�um(t),v j

) + αb
(
v j,�um(t),um(t)

) = (
f(t),v j

)
, ∀ j = 1, . . . ,m,

um(0) is given in R
m.

(6)

Setting wm(t) = curl(um(t) − α�um(t)) and z j = curl(v j − α�v j), and multiplying (6) by λ j , this becomes

(
w′

m, z j
) − ν(� curl um, z j) + b(um;wm, z j) − b(wm;um, z j) = (curl f, z j), ∀ j = 1, . . . ,m. (7)

Note that the fact that um(t) ∈ H4(Ω) implies that all terms in (7) belong to L2(Ω).
The existence of these Galerkin approximations is proved in [1]. For simplicity, we denote

ϕ(t) = ∥∥um(t)
∥∥2

L2(Ω)
+ α

∥∥∇um(t)
∥∥2

L2 and ψ(t) = ∥∥curl
(
um(t) − α�um(t)

)∥∥2
L2(Ω)

.

The following result gives an estimate in the weak norm ϕ(t), based on weak formulation (6):

Lemma 3.2. (See [1, p. 327].) Solutions um of the problem (6) satisfy the following inequality:

ϕ(t) � e−νKtϕ(0) + P 2

ν

t∫
0

e−νK (t−s)
∥∥f(s)

∥∥2
L2(Ω)

ds, ∀t ∈ [0, T ], (8)

where P > 0 is the Poincaré constant (‖u‖L2 � P ‖∇u‖L2 for all u ∈ H1
0(Ω)) and K = (P 2 + α)−1 .

Now, we will give some sufficient conditions to find Galerkin solutions of (6) defined in invariant sets with respect to
the initial and final time data.

Theorem 3.3. If ϕ(0) � M0(f), then ϕ(t) � M0(f), for each t ∈ [0, T ], where

M0(f) = P 2

ν2 K
‖f‖2

L∞(0,T ;L2(Ω))
.

Proof. From (8), we have that

ϕ(t) � e−νKtϕ(0) + (
1 − e−νKt) P 2

ν2 K
‖f‖2

L∞(0,T ;L2(Ω))

� e−νKt M0(f) + (
1 − e−νKt)M0(f) = M0(f). �

The estimate given in Theorem 3.3 leads to define a continuous operator from R
m to R

m , mapping the initial value
um(0) to the final value um(T ), giving the existence of a bounded convex invariant set to this operator. Then, one has the
existence of periodic Galerkin solutions (as fixed-points of this operator). But these periodic Galerkin solutions are bounded
only in L∞(0, T ;H1(Ω)), and this bound is not sufficient to control the passage to the limit (as m ↑ ∞).

The following result gives an estimate in the regular norm ψ(t), based on vorticity formulation (7):
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Lemma 3.4. (See [1, p. 329].) If ∂Ω is of class C 3,1 , then there exists a constant C2(α) > 0 such that ψ(t) satisfies the differential
inequality in [0, T ]:

ψ ′(t) +
(

ν

α
− 2C2(α)ψ1/2(t)

)
ψ(t) � 4ν

α2
e−νKtϕ(t) + 2α

ν

∥∥curl f(t)
∥∥2

L2(Ω)
. (9)

The choice of the spectral basis (v j) j ⊂ H4(Ω) defined in (5) is very important in order to assure inequalities (8) and (9)
(see [1] for details).

Now, we are going to deduce an invariant bound for ψ(t) imposing f small enough.

Theorem 3.5. Let M1 > 0 be such that

2C2(α)s1/2 <
ν

2α
, ∀s ∈ (0, M1]

(
i.e. M1 <

(
ν

4α C2(α)

)2)
. (10)

Furthermore, let us suppose that f satisfies the smallness hypotheses:

4ν

α2
M0(f) + 2α

ν
‖ curl f‖2

L∞(0,T ;L2(Ω))
� ν

2α
M1. (11)

If ϕ(0) � M0(f) and ψ(0) � M1 , then ψ(t) � M1 for all t ∈ [0, T ].

Proof. From Theorem 3.3 and hypothesis ϕ(0) � M0(f) one has ϕ(t) � M0(f) for any t ∈ [0, T ]. Then, by using hypothesis
(11), differential inequality (9) reduces to

ψ ′(t) +
(

ν

α
− 2C2(α)ψ1/2(t)

)
ψ(t) � ν

2α
M1. (12)

Taking into account (10), there exists δ > 0 such that

2C2(α)s1/2 � ν

2α
, ∀s ∈ [M1, M1 + δ]. (13)

Firstly, we are going to prove the following estimate:

ψ(t) < M1 + δ, ∀t ∈ [0, T ].
By contradiction, let T ∗ ∈ (0, T ] be the first value such that ψ(T ∗) = M1 + δ and ψ(t) < M1 + δ, ∀t ∈ [0, T ∗[. In particular,
from (10) and (13), 2C2(α)ψ(t)1/2 � ν/(2α) for all t ∈ [0, T ∗]. Thus, from (12)

ψ ′(t) + ν

2α
ψ(t) � ν

2α
M1, ∀t ∈ (

0, T ∗]. (14)

By multiplying the above inequality by e
ν

2α t , integrating in time for t ∈ [0, T ∗] and using hypothesis ψ(0) � M1, we have
that ψ(T ∗) � e− ν

2α T ∗
M1 + (1 − e− ν

2α T ∗
)M1 = M1, which is a contradiction, therefore ψ(t) < M1 + δ for all t ∈ [0, T ].

In particular, differential inequality (14) holds for any t ∈ [0, T ], hence by repeating the same arguments in each interval
[0, t] for all t ∈ [0, T ], we get ψ(t) � e− νt

2α M1 + (1 − e− νt
2α )M1 = M1, which finish the proof. �

Now, we are in position to prove the main result of existence and uniqueness of reproductive solution (Theorem 0.1).
With respect to the existence, for every (ξ1, ξ2, . . . , ξm) ∈ R

m and u = ξ1v1 + ξ2v2 + · · · + ξmvm ∈ Vm , we define the
following equivalent norms:

∥∥(ξ1, ξ2, . . . , ξm)
∥∥

a,Rm := (‖u‖2
L2(Ω)

+ α‖∇u‖2
L2(Ω)

)1/2
,∥∥(ξ1, ξ2, . . . , ξm)

∥∥
b,Rm := ∥∥curl(u − α�u)

∥∥
L2(Ω)

.

Given (ξ1, ξ2, . . . , ξm) ∈ R
m , we define the operator Φm : R

m → R
m in the following manner: Φm(ξ1, ξ2, . . . , ξm) =

(cm
1 (T ), cm

2 (T ), . . . , cm
m(T )) ∈ R

m , where (cm
j (t))m are the coefficients of the expansion in Vm of um(t) the solution of (6)

with the initial condition um(0) = ξ1v1 + ξ2v2 + · · · + ξmvm . Note that Φm is a continuous operator because problem (6) can
be reformulated as a Cauchy problem related to an ordinary differential system written in normal form, i.e.

dΦm(t)

dt
= g

(
Φm(t)

)
, t ∈ (0, T ), Φm(0) = (ξ1, ξ2, . . . , ξm),

and this Cauchy problem is continuous with respect to the initial condition (ξ1, ξ2, . . . , ξm).
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Let the following compact and convex set of R
m:

B̄ = {
(ξ1, ξ2, . . . , ξm) ∈ R

m:
∥∥(ξ1, ξ2, . . . , ξm)

∥∥
a,Rm � M0 and

∥∥(ξ1, ξ2, . . . , ξm)
∥∥

b,Rm � M1
}

where M0 and M1 are the constants given in Theorems 3.3 and 3.5 respectively. From Theorems 3.3 and 3.5, we have that
Φm maps B̄ into B̄ . From Brouwer fixed-point theorem, we deduce that there exists a fixed point of Φm and consequently,
there exists a reproductive Galerkin solution um (such that um(0) = um(T )).

From Theorem 3.5, the sequence of reproductive Galerkin solutions (um)m�1 is bounded in L∞(0, T ;V2). By adapting the
proof of Lemma 4.5 in [1], we obtain the following lemma:

Lemma 3.6. Let f ∈ L∞(0, T ;L2(Ω)) with curl f ∈ L∞(0, T ;L2(Ω)) and assume that the sequence (um)m�1 is bounded (with respect
to m) in L∞(0, T ;H3(Ω)). Then (u′

m)m�1 is bounded in L∞(0, T ;H1(Ω)).

Then, by applying a compactness theorem (of Aubin–Lions’ type), there exists a subsequence of (um)m�1 that converges
to u a solution of (3), in the weak sense of (4), hence the existence of reproductive solution is proved.

With respect to the uniqueness, assuming small enough data f and an additional condition on M1, we will have that this
reproductive solution u of (3) obtained by the Galerkin procedure is unique. Indeed, let ũ ∈ L∞(0, T ;V2) be a reproductive
solution of problem (3). Then, the function difference v = u − ũ satisfies (see [1, p. 326])

1

2

d

dt

(∥∥v(t)
∥∥2

L2(Ω)
+ α

∣∣v(t)
∣∣2

H1(Ω)

) + ν
∣∣v(t)

∣∣2
H1(Ω)

+ b(v;u,v) + αb(v;�v,u) − αb(u;�v,v)

�
∣∣u(t)

∣∣
H1(Ω)

∥∥v(t)
∥∥2

L4(Ω)
+ 2α

∥∥∇u(t)
∥∥

L∞(Ω)

∣∣v(t)
∣∣2

H1(Ω)
+ α

∥∥∂2u(t)
∥∥

L4(Ω)

∥∥v(t)
∥∥

L4(Ω)

∣∣v(t)
∣∣

H1(Ω)
. (15)

Then, by using the estimates already obtained for u:

‖u‖L∞(0,T ;H1(Ω)) � M0/α, ‖u‖L∞(0,T ;H3(Ω)) � C(α)M1,

where C(α) is the constant given in Lemma 2.1, the left-hand side of (15) can be bounded by(
C2

1
M0(f)

α
+ 2αC2C(α)M1 + αC2C2

1 C(α)M1

)∣∣v(t)
∣∣2

H1(Ω)

where C1 and C4 are Sobolev imbedding constants. By choosing ‖f‖L∞(0,T ;L2(Ω)) and ‖ curl f‖L∞(0,T ;L2(Ω)) small such that

M0 and M1 are small enough verifying C2
1

M0(f)
α + 2αC2C(α)M1 + αC2C2

1 C(α)M1 � ν
2 , from (15) we obtain

d

dt

(∥∥v(t)
∥∥2

L2(Ω)
+ α

∣∣v(t)
∣∣2

H1(Ω)

) + ν
∣∣v(t)

∣∣2
H1(Ω)

� 0

hence, integrating in (0, T ) and applying the time-periodicity, the uniqueness is proved.
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