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In this Note we generalise the Witten deformation to even dimensional Riemannian
manifolds with cone-like singularities X and certain functions f , which we call admissible
Morse functions. As a corollary we get Morse inequalities for the L2-Betti numbers of X .
The contribution of a singular point p of X to the Morse inequalities can be expressed in
terms of the intersection cohomology of the local Morse datum of f at p. The definition
of the class of functions which we study here is inspired by stratified Morse theory
as developed by Goresky and MacPherson. However the setting here is different since
the spaces considered here are manifolds with cone-like singularities instead of Whitney
stratified spaces.
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r é s u m é

Le but de cette Note est d’étendre la déformation de Witten au cas d’un espace singulier X
de dimension paire à singularités coniques, muni de fonctions appelées fonctions de Morse
admissibles. Comme conséquence on obtient des inégalités de Morse pour les nombres de
Betti L2 de X . La contribution d’un point singulier p de X aux inégalités de Morse s’exprime
en fonction de la cohomologie d’intersection des données de Morse local. La définition des
fonctions de Morse admissibles est inspirée par la théorie de Morse stratifiée de Goresky
et MacPherson. Mais ici on travaille sur des espaces singuliers à singularités coniques au
lieu d’espaces munis d’une stratification de Whitney.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (X, g) be a Riemannian space of dimension n =: 2ν with isolated cone-like singularities Σ := {p1, . . . , pN }. By this we
mean that each p ∈ Σ admits an open neighbourhood Uε(p) in X such that (Uε(p)\{p}, g|U\{p}) is isometric to (coneε(L p)\
{0},dr2 + r2 gLp ) for some ε > 0. Hereby L p is a smooth compact manifold called the link of X at p, gLp is a metric on L p

and r denotes the radial coordinate on the cone coneε(L p) = [0, ε)× L p/{0}× L p . We study a certain class of functions on X ,
which we call admissible Morse functions:
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Definition 1. Let f : X → R be a continuous function which is smooth outside the singularities of X . The function f is called
an admissible Morse function if the restriction f |X\Σ is Morse in the smooth sense and moreover if for any singular point
p ∈ Σ the function f has the following form in local coordinates (r,ϕ) ∈ (0, ε) × L p near p: f (r,ϕ) = f (p) + rh, where
h : L p → R is a smooth function on the link such that |∇ f | = |∇h|2 + h2 � a2 for some a > 0.

The above definition of an admissible Morse function is motivated by stratified Morse theory as developed by Goresky
and MacPherson in [7]: A stratified Morse function is not critical in the normal directions for any critical point of a lower
dimensional stratum.

Let us choose 0 < δ � ε . Let Bε(p) denote the closed ε-ball around p. The local Morse datum of f at p ∈ Σ is in our
case reduced to the normal local Morse datum and is defined as the pair of spaces

(
Bε(p) ∩ f −1([ f (p) − δ, f (p) + δ

])
, Bε(p) ∩ f −1( f (p) − δ

))
. (1)

Actually it is independent of the choices of ε and δ. As in stratified Morse theory (see [7], p. 66) we will call l−p :=
Bε(p) ∩ f −1( f (p) − δ) the lower halflink of f at p. The local Morse datum is homeomorphic to the pair (Bε(p), l−p ). Let us

denote by mi
p := dim I Hi(Bε(p), l−p ), where I H∗ denotes intersection cohomology (with middle perversity). Let us denote by

ci( f |X\Σ) the number of critical points of index i of the restriction f |X\Σ and by ci( f ) := ci( f |X\Σ) + ∑
p∈Σ mi

p .
For Riemannian manifolds with cone-like singularities the intersection cohomology can also be defined analytically,

namely as the cohomology of the complex of L2-forms. This complex computes the so-called L2-cohomology Hi
(2)(X). We

denote by b(2)
i (X) := dim Hi

(2)(X) the L2-Betti numbers of X .
The main goal of this Note is to generalise the Witten deformation (see [11,8]) to the above situation. As a corollary we

give an analytic proof of the below Morse inequalities:

Theorem 2. Let X be a singular Riemannian space as above and let f : X → R be an admissible Morse function on X. Then the
following Morse inequalities hold:

k∑

i=0

(−1)k−ici( f ) �
k∑

i=0

(−1)k−ib(2)
i (X), for all 0 � k < n;

n∑

i=0

(−1)ici( f ) =
n∑

i=0

(−1)ib(2)
i (X). (2)

Theorem 2 is also valid writing dim I Hi(X) instead of b(2)
i (X) and in this case can be proved geometrically in a standard

way by using an appropriate deformation lemma and the corresponding long exact sequence for intersection cohomology.
However we are interested here in generalising the Witten deformation to singular spaces. Let us also point out that unlike
in [7] here we do not work on general Whitney stratified spaces but on Riemannian manifolds with cone-like singularities.
The main reason for this being that for these spaces the complex of L2-forms and its cohomology are well understood. In the
presence of singularities we deform the complex of L2-forms instead of the de Rham complex. By perturbation techniques
one can get the results above for a slightly more general situation, namely for conformally conic Riemannian manifolds
(see [4] for a definition) and functions such that the normal form in Definition 1 includes higher order terms in r. The
Witten deformation for singular complex algebraic curves (i.e. n = 2) has been treated in a previous paper [10]. The proofs
of a part of the results presented here (Proposition 3 and Theorem 4) are easy generalisations of the proofs there. The main
work consists in understanding the local model operator near the singular points of X ; in the situation treated in [10] the
local model operator has a simple form and its spectrum and eigenvalues are computed explicitly.

2. The Witten deformation of the complex of L2-forms and the spectral gap theorem

The de Rham complex of smooth differential forms with compact supports (Ω∗
0 (X \ Σ),d, 〈 , 〉) has a unique extension

into a Hilbert complex (C,d, 〈 , 〉) in the Hilbert space of square integrable forms (see [3] for the definition of a Hilbert
complex). Hereby 〈 , 〉 denotes the L2-metric: 〈α,β〉 = ∫

X\Σ α ∧ ∗β . The cohomology of the complex (C,d, 〈 , 〉) is the L2-

cohomology of X , Hi
(2)

(X). The Witten method consists in deforming the complex (Ω∗
0 (X \ Σ),d, 〈 , 〉) into a complex

(Ω∗
0 (X \ Σ),dt , 〈 , 〉), where dtω = e−t f d(et f ω) = dω + t d f ∧ ω. We denote by δt the formal adjoint of dt with respect to

the L2-metric 〈 , 〉.

Proposition 3. The complex (Ω∗
0 (X \Σ),dt , 〈 , 〉) has a unique extension into a Hilbert complex (Ct ,dt , 〈 , 〉). Moreover the associated

Laplacian �t = dtδt + δtdt with dom(�t) = {Ψ ∈ L2(Λ∗(T ∗(X \ Σ))) | dtΨ,δtΨ,dtδtΨ,δtdtΨ ∈ L2(Λ∗(T ∗(X \ Σ)))} is a non-
negative, self-adjoint, discrete operator. Moreover ker(�(i)

t ) � Hi((Ct ,dt , 〈 , 〉)) � Hi
(2)(X), where �

(i)
t denotes the restriction of �t

to i-forms.

The proof is a generalisation of [10]. We call the operator �t , with dom(�t), the Witten Laplacian.



U. Ludwig / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 915–918 917
Theorem 4 (Spectral gap theorem).

(a) There exist constants C1, C2, C3 and t0 > 0 depending on X and f such that spec(�t) ∩ (C1e−C2t , C3t) = ∅ for any t > t0 .
(b) Let us denote by (Ft ,dt , 〈 , 〉) the subcomplex of (Ct ,dt , 〈 , 〉) generated by all eigenforms of the Witten Laplacian �t to eigenvalues

in [0,1]. Then there exists t0 > 0 such that, for t � t0 ,

dim F
i
t = ci( f |X\Σ) +

∑

p∈Σ

mi
p =: ci( f ). (3)

Once the local situation near singular points of X is understood, one can proceed as in the smooth case to prove
Theorem 4 (see e.g. [1], Section 9). The Morse inequalities in Theorem 2 follow from the spectral gap theorem (part (b)) by
the usual argument.

The basic step in the proof of the spectral gap theorem is the study of a model operator for the Witten Laplacian
in the neighbourhood of a singular point p ∈ Σ of X . Let us denote by (cone(L p),dr2 + r2 gLp ) the infinite cone over
the link L p . Let f = rh be a function defined on the whole infinite cone, with h : L p → R, |∇h|2 + h2 � a2 > 0. Let
(Ω∗

0 (cone(L p)),d, 〈 , 〉) be the de Rham complex of smooth compactly supported differential forms on the infinite cone.
We denote by (Ω∗

0 (cone(L p)),dt , 〈 , 〉) the complex obtained by deforming the complex (Ω∗
0 (cone(L p)),d, 〈 , 〉) by means of

the function f , i.e. dtω := e−t f d(et f ω). As before one can show that there is a unique Hilbert complex (Dt ,dt , 〈 , 〉) ex-
tending the complex (Ω∗

0 (cone(L p)),dt , 〈 , 〉). We define the model Witten Laplacian �t,p as the Laplacian associated to the
Hilbert complex (Dt ,dt , 〈 , 〉).

Theorem 5 (Local spectral gap theorem).

(a) There exists c > 0 such that, for t large enough, spec(�t,p) ⊂ {0} ∪ [ct2,∞). Moreover all forms in ker(�t,p), as well as their
derivatives have exponential decay outside a small neighbourhood of the singularity.

(b) One has, for t large enough,

ker
(
�

(i)
t,p

) � I Hi(Bε(p), l−p
)
. (4)

The corresponding local spectral gap theorem for curves in [10] has been proved by an explicit computation. There the
local model operator is simply “�t,p = �p + t2” and the eigenforms in ker(�t,p) are given explicitly in terms of modified
Bessel functions, which have exponential decay for r → ∞. In the general situation treated here the model operator has the
form �t,p = �p + tM f + t2|∇ f |2, where M f is a 0-order operator having a pole of order 1 in r at r → 0. However one
can show the following proposition, using the line of arguments in [4] (where the analogous statement for the Laplacian is
shown):

Proposition 6. Let us denote by �F
t,p the Friedrichs extension of �t,p|Ω∗

0
. Then, for k �= ν: �

(k)
t,p = �

(k),F
t,p .

Using further techniques from [5], Section 3, one can give estimates for the Friedrichs extension �F
t,p which will show

the local spectral gap theorem for all degrees k �= ν . The case k = ν follows using the Hodge decomposition for the local
complex (Dt ,dt , 〈 , 〉). To prove the exponential decay of forms in ker(�t,p) one uses Agmon type estimates (similarly to
those in e.g. [9], p. 22 ff.).

To prove the isomorphism in part (b) we adapt a “cone construction” in [2] (see also [6]).
Note that in contrast to [10] the proof of Theorem 5 does not give the eigenforms in ker(�t,p) explicitly. Moreover the

contribution of the singularity is not concentrated in one degree only (as it is in the curve case) and it depends highly on
the chosen admissible function (as can be seen from part (b)). To be able to produce a combinatorial complex in the higher
dimensional case it would be therefore necessary to focus on special cases of admissible Morse functions.
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