

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Geometry

Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds

Représentations primitivement stables des variétés hyperboliques géométriquement infinies du bretzel creux

Woojin Jeon^a, Inkang Kim^{b,1}

^a Department of Mathematics, Seoul National University, San 56-1, Sinlim-dong, Gwanak-ku, Seoul 151-747, Republic of Korea ^b School of Mathematics, KIAS, Heogiro 87, Dongdaemen-gu, Seoul 130-722, Republic of Korea

ARTICLE INFO

Article history: Received 17 February 2010 Accepted after revision 15 July 2010 Available online 27 July 2010

Presented by Étienne Ghys

ABSTRACT

In this Note we show that a discrete faithful representation of a free group in $PSL(2, \mathbb{C})$ without parabolics is primitive stable.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous démontrons qu'une représentation discrète, fidèle du groupe libre dans $PSL(2, \mathbb{C})$ sans parabolique est primitivement stable.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On dit qu'un élément du groupe libre est primitif s'il appartient à un système de générateurs. On montre qu'une représentation fidèle et discrète sans parabolique du groupe libre dans $PSL(2, \mathbb{C})$ est primitivement stable, c'est-à-dire, les orbites des éléments primitifs dans \mathbb{H}^3 sont uniformément quasi-géodésiques. Ce résultat résout la conjecture de Minsky. Pour le cas avec paraboliques, on suppose que chaque composante de la lamination terminale est doublement incompressible.

1. Introduction

Let *F* be a free group of rank *n* and Γ a bouquet of *n* oriented circles realizing *F* with respect to a fixed generating set $X = \{x_1, \ldots, x_n\}$. Then $\tilde{\Gamma}$ is a Cayley graph of *F* with respect to *X*. To every conjugacy class [w] in *F* is associated a bi-infinite oriented geodesic in Γ named \bar{w} , namely the periodic word determined by concatenating infinitely many copies of a cyclically reduced representative of *w*. An element of *F* is called *primitive* if it is a member of a free generating set and let \mathcal{P} denote the set consisting of \bar{w} for conjugacy classes [w] of primitive elements, which is Out(F)-invariant.

Given a representation $\rho: F \to PSL_2(\mathbb{C})$ and a base point $o \in \mathbb{H}^3$, there is a unique ρ -equivariant map $\tau_{\rho,o}: \tilde{\Gamma} \to \mathbb{H}^3$ mapping the origin e of $\tilde{\Gamma}$ to o and mapping each edge to a geodesic segment. Any \bar{w} is represented by an F-invariant family of leaves in $\tilde{\Gamma}$, which map to a family of broken geodesic paths in \mathbb{H}^3 .

E-mail addresses: eissa76@snu.ac.kr (W. Jeon), inkang@kias.re.kr (I. Kim).

¹ The second author gratefully acknowledges the partial support of NRF grant (R01-2008-000-10052-0).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.07.015

A representation $\rho: F \to PSL_2(\mathbb{C})$ is primitive stable if there are constants K, δ and a base point $o \in \mathbb{H}^3$ such that $\tau_{\rho,o}$ takes all leaves of \mathcal{P} to (K, δ) -quasi geodesics in \mathbb{H}^3 . For each \bar{w} , we will choose a specified lift \tilde{w} passing through $e \in \tilde{\Gamma}$. If each \tilde{w} is mapped by $\tau_{\rho,o}$ to a uniform quasigeodesic in \mathbb{H}^3 then ρ will be primitive stable.

Minsky [10] showed that

- (i) If ρ is Schottky then it is primitive stable.
- (ii) The set of primitive stable representations up to conjugacy, \mathcal{PS} , is open.
- (iii) If ρ is primitive stable then, for every free factor A of F, $\rho|_A$ is Schottky.

In the same paper, he conjectured that

- (i) Every discrete faithful representation of F without parabolics is primitive stable.
- (ii) A discrete faithful representation of *F* is primitive stable if and only if every component of its ending lamination is blocking.

Since every geometrically finite representation of F without parabolics is Schottky and every Schottky group is primitive stable [10], the following theorem settles down the first conjecture:

Theorem 1. Let $M = \mathbb{H}^3 / \rho(F)$ be a geometrically infinite hyperbolic manifold without parabolics. Then ρ is primitive stable.

We also answer the second conjecture partially.

Theorem 2. Suppose ρ is a geometrically infinite discrete faithful representation with parabolics with an ending lamination $\lambda = \bigcup_{\lambda_i} \lambda_i$ together with parabolic loci. If $M = \mathbb{H}^3 / \rho(F)$ has a non-cuspidal part $M_0 = H \cup E_i$ where $E_i = S_i \times [0, \infty)$ corresponding to an incompressible S_i is geometrically finite, and where E_i corresponding to a compressible S_i has a doubly incompressible ending lamination λ_i , then ρ is primitive stable.

2. Proof of the main theorem

Let *H* be a genus *n* handlebody. A measured lamination λ on ∂H is *doubly incompressible* if for any essential disc or annulus *A*, $i(\partial A, \lambda) > 0$ where *i* denotes the intersection form. The set of doubly incompressible measured laminations is strictly bigger than the Masur domain [8]. Let $\Delta = \{\delta_1, \ldots, \delta_n\}$ be a system of compressing disks on *H* along which one can cut *H* into a 3-ball. A free generating set of $\pi_1(H) = F_n = F$ is dual to such a system. Let $X = \{x_1, x_2, \ldots, x_n\}$ be the free generating set dual to Δ . *Wh*(*g*, *X*), the Whitehead graph of a cyclically reduced primitive word *g* with respect to a generating set of *F*, is defined as follows [14,15,13]. *Wh*(*g*, *X*) is a graph with 2*n* vertices $X \cup X^{-1} = \{x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}\}$ and two vertices x, y^{-1} is joined by an edge from *x* to y^{-1} whenever the string *xy* appears in *g* or in a cyclic permutation of *g*.

Lemma 2.1 (Whitehead). Let g be a cyclically reduced word in a free group F, and let X be a fixed generating set. If Wh(g, X) is connected and has no cutpoint, then g is not primitive.

Given a doubly incompressible measured lamination λ , we can find a system of compressing disks Δ which cut H into a 3-ball so that every arc of $\lambda \setminus \Delta$ is in *tight position* with respect to Δ . For details, see [12,9,10]. When we cut ∂H along Δ , we get 2*n* boundary circles, each labeled by δ_i^+, δ_i^- and $Wh(\lambda, \Delta)$ can be defined as the graph whose vertices and edges are 2*n* boundary circles and arcs in $\lambda \setminus \Delta$ respectively. It is not difficult to see that Wh(g, X) is equivalent to $Wh(g, \Delta)$ for a cyclically reduced word g if Δ is a dual system to X. The following lemma is essentially due to Otal [12], see also [9,10]:

Lemma 2.2. Let λ be a doubly incompressible measured lamination. Then there is a generating set with the dual disk system \triangle so that $Wh(\lambda, \Delta)$ is connected and has no cutpoints.

Let $\rho : F \to PSL(2, \mathbb{C})$ be a geometrically infinite discrete faithful representation without parabolics and $M = \mathbb{H}^3/\rho(F)$. Then by tameness theorem [1,3], $M = H \cup E$ where H is the compact genus n handlebody and E is the compressible end homeomorphic to $\partial H \times [0, \infty)$. In this case, the existence of the Cannon–Thurston map for free groups, and its main property can be stated as follows:

Theorem 2.3. (See [11,5].) Let \tilde{H} denote the inverse image of H in \mathbb{H}^3 and let $\hat{H} = \tilde{H} \cup \partial \tilde{H}$ where $\partial \tilde{H}$ is the Gromov boundary. Define \tilde{M} , \hat{M} similarly. Then the inclusion $\tilde{i} : \tilde{H} \to \tilde{M}$ extends continuously to a map $\hat{i} : \hat{H} \to \tilde{M}$. Let $\hat{i}(a) = \hat{i}(b)$ for a, b two distinct points that are identified by the Cannon–Thurston map. Then a, b are either ideal end-points of a leaf of the ending lamination or ideal boundary points of a complementary ideal polygon.

Let us choose a hyperbolic metric on ∂H and let γ be the geodesic homotopic to the projection to ∂H of the unique bi-infinite path joining a and b as in the above theorem. Note that an ending lamination λ of M consists of just one minimal component so every leaf is dense and any isolated bi-infinite geodesic spiraling to λ has the minimal component in its closure. Thus the closure of γ in ∂H contains λ . Furthermore, by Canary [4], λ is in the Masur domain so is doubly incompressible. Here we give the proof of our main theorem.

Proof of Theorem 1. Recall that $M = \mathbb{H}^3/\rho(F) = H \cup (\partial H \times [0, \infty))$. Regard each cyclically reduced primitive word w as a covering transformation of $\tilde{\Gamma}$ and let \tilde{w} be the unique bi-infinite path in $\tilde{\Gamma}$ passing through $w^k(e)$ for all $k \in \mathbb{Z}$. Then its image under $\tau_{\rho,o}$ passes through o. Suppose ρ is not primitive stable and let γ_{w_n} be the hyperbolic bi-infinite geodesic which has the same end-points as the broken geodesic $\tau_{\rho,o}(\tilde{w}_n)$ with respect to a chosen hyperbolic metric on ∂H . We claim that we can choose a sequence of cyclically reduced primitive words w_n such that γ_{w_n} leaves every compact set in \mathbb{H}^3 as $n \to \infty$. \Box

Proof of the claim. Note that when we identify the core curves of H with Γ , if every geodesic is contained in a uniformly thickened Γ in $M = \mathbb{H}^3/\rho(F)$, then ρ is primitive stable, see Lemma 3.2. in [10]. Since ρ is not primitive stable, there exists a sequence of cyclically reduced primitive words $\{w_n\}$ and a sequence of positive numbers $\{\epsilon_n\}$ such that the projection of γ_{w_n} is not contained in ϵ_n -neighborhood of the core curves of H where $\epsilon_n \to \infty$. Thus γ_{w_n} is not contained in ϵ_n -neighborhood of $\tau_{\rho,o}(\tilde{\Gamma})$ in \mathbb{H}^3 and not in ϵ_n -neighborhood of $\tau_{\rho,o}(\tilde{w}_n)$ either. In particular, we can choose a vertex of $\tau_{\rho,o}(\tilde{w}_n)$ whose minimal distance from γ_{w_n} is larger than ϵ_n . Moreover, we can shift w_n 's so that the specified vertex is the base point o as follows.

Let the vertex be $\rho(w_n^i v_n) o$ where $w_n = g_1 g_2 \cdots g_k$ and $v_n = g_1 \cdots g_l$ for l < k and $i \in \mathbb{Z}$. Assuming $d_{\mathbb{H}^3}(\rho(w_n^i v_n) o, \gamma_{w_n}) > \epsilon_n$ and noting that γ_{w_n} is the axis of the loxodromic isometry $\rho(w_n)$, we get

$$d_{\mathbb{H}^3}(\rho(w_n^{\mathsf{i}}v_n)o,\gamma_{w_n}) = d_{\mathbb{H}^3}(\rho(v_n)o,\gamma_{w_n}) = d_{\mathbb{H}^3}(o,\rho(v_n)^{-1}\gamma_{w_n})$$

and

$$\rho(\mathbf{v}_n)^{-1} \gamma_{\mathbf{w}_n} = \gamma_{\mathbf{v}_n^{-1} \mathbf{w}_n \mathbf{v}_n}$$

Then $v_n^{-1}w_nv_n$ is a shifted word so it is also primitive. Finally we get

$$d_{\mathbb{H}^3}(0,\gamma_{\nu_n^{-1}w_n\nu_n}) > \epsilon_n.$$

Thus $\gamma_{v_n^{-1}w_nv_n}$ has to leave every compact set in \mathbb{H}^3 and $\{v_n^{-1}w_nv_n\}$ is our required sequence. This proves the claim. Denote this sequence again by $\{w_n\}$ by using a slight abuse of notation. We further reduce $\{w_n\}$ to a subsequence such that for all i > 0, $w_{i+1} = w_i g_1 g_2 \cdots g_k$ for some k > 0 where $g_j \in X \cup X^{-1}$. This is a variant of Cantor diagonal process mentioned in [6].

Now let \tilde{w}_{∞} be the limit of \tilde{w}_n . Since γ_{w_n} leaves every compact set of \mathbb{H}^3 as $n \to \infty$, the Cannon–Thurston map \hat{i} maps the end-points of \tilde{w}_{∞} to a point $p \in \partial \mathbb{H}^3$. Let γ_n be the geodesic representing w_n on the boundary of the handlebody and let γ_{∞} be their Hausdorff limit. Here we appeal to Theorem 2.3, which implies that the closure of γ_{∞} must contain the ending lamination λ of M. Since $Wh(\lambda, \Delta)$ is connected and has no cutpoints with respect to some Δ by Lemma 2.2, the same is true for $Wh(\gamma_n, \Delta)$ for large n. But for any primitive word w_n , this is impossible by Whitehead Lemma 2.1. \Box

The proof of Theorem 2 can be done analogously. Call a lamination λ blocking with respect to Δ if it is in tight position and there exists some *k* such that every length *k* subword of the infinite word determined by a leaf of λ does not appear in a cyclically reduced primitive word. Lemma 4.6 in [10] can be generalized as follows:

Lemma 2.4. A connected doubly incompressible lamination λ on the boundary of a handlebody is blocking with respect to some generating set.

Proof of Theorem 2. If $M_i = H_i \cup E_i$ is the covering manifold corresponding to $\pi_1(S_i)$, then the end E_i is bilipschitz homeomorphic to an end of a simply degenerate hyperbolic manifold homeomorphic to $S_i \times \mathbb{R}$ [2]. Then the rest of the proof is the combination of [11] and [5]. See [7] for details. \Box

References

- [1] I. Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568, 2004, preprint.
- [2] B. Bowditch, Geometric model for hyperbolic manifolds, Southhampton, 2005, preprint.
- [3] D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2) (2006) 385-446.
- [4] R.D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1) (1993) 1-35.
- [5] S. Das, M. Mj, Addendum to ending laminations and Cannon-Thurston maps: Parabolics, arXiv:1002.2090, 2010, preprint.
- [6] W.J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205-218.
- [7] W. Jeon, I. Kim, On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds, arXiv:1003.2055, 2010, preprint.

- [8] I. Kim, Divergent sequences of function groups, Differential Geom. Appl. 26 (6) (2008) 645-655.
- [9] I. Kim, C. Lecuire, K. Ohshika, Convergence of freely decomposable Kleinian groups, arXiv:0708.3266, 2004, preprint.
- [10] Y. Minsky, On dynamics of $Out(F_n)$ on $PSL_2(\mathbb{C})$ characters, arXiv:0906.3491, 2009, preprint.
- [11] M. Mj, Cannon-Thurston maps for Kleinian groups, arXiv:1002.0996, 2010, preprint.
- [12] J.-P. Otal, Courants géodésiques et produits libres, Thèse d'Etat, Université de Paris-Sud, Orsay, 1988.
- [13] J.R. Stallings, Whitehead graphs on handlebodies, 1996, preprint.
- [14] J.H.C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936) 48-56.
- [15] J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. 37 (1936) 780–782.