Geometry

Primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds

Représentations primitivement stables des variétés hyperboliques géométriquement infinies du bretzel creux

Woojin Jeon ${ }^{\text {a }}$, Inkang Kim ${ }^{\text {b, }}{ }^{1}$
a Department of Mathematics, Seoul National University, San 56-1, Sinlim-dong, Gwanak-ku, Seoul 151-747, Republic of Korea
${ }^{\text {b }}$ School of Mathematics, KIAS, Heogiro 87, Dongdaemen-gu, Seoul 130-722, Republic of Korea

A R T I C L E IN F O

Article history:

Received 17 February 2010
Accepted after revision 15 July 2010
Available online 27 July 2010
Presented by Étienne Ghys

Abstract

In this Note we show that a discrete faithful representation of a free group in $\operatorname{PSL}(2, \mathbb{C})$ without parabolics is primitive stable. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Nous démontrons qu'une représentation discrète, fidèle du groupe libre dans $\operatorname{PSL}(2, \mathbb{C})$ sans parabolique est primitivement stable.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On dit qu'un élément du groupe libre est primitif s'il appartient à un système de générateurs. On montre qu'une représentation fidèle et discrète sans parabolique du groupe libre dans $\operatorname{PSL}(2, \mathbb{C})$ est primitivement stable, c'est-à-dire, les orbites des éléments primitifs dans \mathbb{H}^{3} sont uniformément quasi-géodésiques. Ce résultat résout la conjecture de Minsky. Pour le cas avec paraboliques, on suppose que chaque composante de la lamination terminale est doublement incompressible.

1. Introduction

Let F be a free group of rank n and Γ a bouquet of n oriented circles realizing F with respect to a fixed generating set $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Then $\tilde{\Gamma}$ is a Cayley graph of F with respect to X. To every conjugacy class $[w]$ in F is associated a bi-infinite oriented geodesic in Γ named \bar{w}, namely the periodic word determined by concatenating infinitely many copies of a cyclically reduced representative of w. An element of F is called primitive if it is a member of a free generating set and let \mathcal{P} denote the set consisting of \bar{w} for conjugacy classes [w] of primitive elements, which is $\operatorname{Out}(F)$-invariant.

Given a representation $\rho: F \rightarrow P S L_{2}(\mathbb{C})$ and a base point $o \in \mathbb{H}^{3}$, there is a unique ρ-equivariant map $\tau_{\rho, o}: \tilde{\Gamma} \rightarrow \mathbb{H}^{3}$ mapping the origin e of $\tilde{\Gamma}$ to o and mapping each edge to a geodesic segment. Any \bar{w} is represented by an F-invariant family of leaves in $\tilde{\Gamma}$, which map to a family of broken geodesic paths in \mathbb{H}^{3}.

[^0]A representation $\rho: F \rightarrow P_{2}(\mathbb{C})$ is primitive stable if there are constants K, δ and a base point $o \in \mathbb{H}^{3}$ such that $\tau_{\rho, o}$ takes all leaves of \mathcal{P} to (K, δ)-quasi geodesics in \mathbb{H}^{3}. For each \bar{w}, we will choose a specified lift \tilde{w} passing through $e \in \tilde{\Gamma}$. If each \tilde{w} is mapped by $\tau_{\rho, o}$ to a uniform quasigeodesic in \mathbb{H}^{3} then ρ will be primitive stable.

Minsky [10] showed that
(i) If ρ is Schottky then it is primitive stable.
(ii) The set of primitive stable representations up to conjugacy, $\mathcal{P S}$, is open.
(iii) If ρ is primitive stable then, for every free factor A of $F,\left.\rho\right|_{A}$ is Schottky.

In the same paper, he conjectured that
(i) Every discrete faithful representation of F without parabolics is primitive stable.
(ii) A discrete faithful representation of F is primitive stable if and only if every component of its ending lamination is blocking.

Since every geometrically finite representation of F without parabolics is Schottky and every Schottky group is primitive stable [10], the following theorem settles down the first conjecture:

Theorem 1. Let $M=\mathbb{H}^{3} / \rho(F)$ be a geometrically infinite hyperbolic manifold without parabolics. Then ρ is primitive stable.

We also answer the second conjecture partially.

Theorem 2. Suppose ρ is a geometrically infinite discrete faithful representation with parabolics with an ending lamination $\lambda=$ $\cup \lambda_{i}$ together with parabolic loci. If $M=\mathbb{H}^{3} / \rho(F)$ has a non-cuspidal part $M_{0}=H \cup E_{i}$ where $E_{i}=S_{i} \times[0, \infty)$ corresponding to an incompressible S_{i} is geometrically finite, and where E_{i} corresponding to a compressible S_{i} has a doubly incompressible ending lamination λ_{i}, then ρ is primitive stable.

2. Proof of the main theorem

Let H be a genus n handlebody. A measured lamination λ on ∂H is doubly incompressible if for any essential disc or annulus $A, i(\partial A, \lambda)>0$ where i denotes the intersection form. The set of doubly incompressible measured laminations is strictly bigger than the Masur domain [8]. Let $\Delta=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a system of compressing disks on H along which one can cut H into a 3-ball. A free generating set of $\pi_{1}(H)=F_{n}=F$ is dual to such a system. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the free generating set dual to \triangle. $W h(g, X)$, the Whitehead graph of a cyclically reduced primitive word g with respect to a generating set of F, is defined as follows [14,15,13]. Wh (g, X) is a graph with $2 n$ vertices $X \cup X^{-1}=\left\{x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right\}$ and two vertices x, y^{-1} is joined by an edge from x to y^{-1} whenever the string $x y$ appears in g or in a cyclic permutation of g.

Lemma 2.1 (Whitehead). Let g be a cyclically reduced word in a free group F, and let X be a fixed generating set. If $W h(g, X)$ is connected and has no cutpoint, then g is not primitive.

Given a doubly incompressible measured lamination λ, we can find a system of compressing disks Δ which cut H into a 3-ball so that every arc of $\lambda \backslash \Delta$ is in tight position with respect to Δ. For details, see $[12,9,10]$. When we cut ∂H along Δ, we get $2 n$ boundary circles, each labeled by $\delta_{i}^{+}, \delta_{i}^{-}$and $W h(\lambda, \Delta)$ can be defined as the graph whose vertices and edges are $2 n$ boundary circles and arcs in $\lambda \backslash \Delta$ respectively. It is not difficult to see that $W h(g, X)$ is equivalent to $W h(g, \Delta)$ for a cyclically reduced word g if Δ is a dual system to X. The following lemma is essentially due to Otal [12], see also [9,10]:

Lemma 2.2. Let λ be a doubly incompressible measured lamination. Then there is a generating set with the dual disk system \triangle so that $W h(\lambda, \Delta)$ is connected and has no cutpoints.

Let $\rho: F \rightarrow \operatorname{PSL}(2, \mathbb{C})$ be a geometrically infinite discrete faithful representation without parabolics and $M=\mathbb{H}^{3} / \rho(F)$. Then by tameness theorem [1,3], $M=H \cup E$ where H is the compact genus n handlebody and E is the compressible end homeomorphic to $\partial H \times[0, \infty)$. In this case, the existence of the Cannon-Thurston map for free groups, and its main property can be stated as follows:

Theorem 2.3. (See [11,5].) Let \tilde{H} denote the inverse image of H in \mathbb{H}^{3} and let $\hat{H}=\tilde{H} \cup \partial \tilde{H}$ where $\partial \tilde{H}$ is the Gromov boundary. Define \tilde{M}, \hat{M} similarly. Then the inclusion $\tilde{i}: \tilde{H} \rightarrow \tilde{M}$ extends continuously to a map $\hat{i}: \hat{H} \rightarrow \hat{M}$. Let $\hat{i}(a)=\hat{i}(b)$ for a, b two distinct points that are identified by the Cannon-Thurston map. Then a, b are either ideal end-points of a leaf of the ending lamination or ideal boundary points of a complementary ideal polygon.

Let us choose a hyperbolic metric on ∂H and let γ be the geodesic homotopic to the projection to ∂H of the unique bi-infinite path joining a and b as in the above theorem. Note that an ending lamination λ of M consists of just one minimal component so every leaf is dense and any isolated bi-infinite geodesic spiraling to λ has the minimal component in its closure. Thus the closure of γ in ∂H contains λ. Furthermore, by Canary [4], λ is in the Masur domain so is doubly incompressible. Here we give the proof of our main theorem.

Proof of Theorem 1. Recall that $M=\mathbb{H}^{3} / \rho(F)=H \cup(\partial H \times[0, \infty))$. Regard each cyclically reduced primitive word w as a covering transformation of $\tilde{\Gamma}$ and let \tilde{w} be the unique bi-infinite path in $\tilde{\Gamma}$ passing through $w^{k}(e)$ for all $k \in \mathbb{Z}$. Then its image under $\tau_{\rho, o}$ passes through o. Suppose ρ is not primitive stable and let $\gamma_{w_{n}}$ be the hyperbolic bi-infinite geodesic which has the same end-points as the broken geodesic $\tau_{\rho, o}\left(\tilde{w}_{n}\right)$ with respect to a chosen hyperbolic metric on ∂H. We claim that we can choose a sequence of cyclically reduced primitive words w_{n} such that $\gamma_{w_{n}}$ leaves every compact set in \mathbb{H}^{3} as $n \rightarrow \infty$.

Proof of the claim. Note that when we identify the core curves of H with Γ, if every geodesic is contained in a uniformly thickened Γ in $M=\mathbb{H}^{3} / \rho(F)$, then ρ is primitive stable, see Lemma 3.2. in [10]. Since ρ is not primitive stable, there exists a sequence of cyclically reduced primitive words $\left\{w_{n}\right\}$ and a sequence of positive numbers $\left\{\epsilon_{n}\right\}$ such that the projection of $\gamma_{w_{n}}$ is not contained in ϵ_{n}-neighborhood of the core curves of H where $\epsilon_{n} \rightarrow \infty$. Thus $\gamma_{w_{n}}$ is not contained in ϵ_{n} neighborhood of $\tau_{\rho, o}(\tilde{\Gamma})$ in \mathbb{H}^{3} and not in ϵ_{n}-neighborhood of $\tau_{\rho, o}\left(\tilde{w}_{n}\right)$ either. In particular, we can choose a vertex of $\tau_{\rho, o}\left(\tilde{w}_{n}\right)$ whose minimal distance from $\gamma_{w_{n}}$ is larger than ϵ_{n}. Moreover, we can shift w_{n} 's so that the specified vertex is the base point o as follows.

Let the vertex be $\rho\left(w_{n}^{i} v_{n}\right) o$ where $w_{n}=g_{1} g_{2} \cdots g_{k}$ and $v_{n}=g_{1} \cdots g_{l}$ for $l<k$ and $i \in \mathbb{Z}$. Assuming $d_{\mathbb{H}^{3}}\left(\rho\left(w_{n}^{i} v_{n}\right) o, \gamma_{w_{n}}\right)>$ ϵ_{n} and noting that $\gamma_{w_{n}}$ is the axis of the loxodromic isometry $\rho\left(w_{n}\right)$, we get

$$
d_{\mathbb{H}^{3}}\left(\rho\left(w_{n}^{i} v_{n}\right) o, \gamma_{w_{n}}\right)=d_{\mathbb{H}^{3}}\left(\rho\left(v_{n}\right) o, \gamma_{w_{n}}\right)=d_{\mathbb{H}^{3}}\left(o, \rho\left(v_{n}\right)^{-1} \gamma_{w_{n}}\right)
$$

and

$$
\rho\left(v_{n}\right)^{-1} \gamma_{w_{n}}=\gamma_{v_{n}^{-1} w_{n} v_{n}}
$$

Then $v_{n}^{-1} w_{n} v_{n}$ is a shifted word so it is also primitive. Finally we get

$$
d_{\mathbb{H}^{3}}\left(o, \gamma_{v_{n}^{-1} w_{n} v_{n}}\right)>\epsilon_{n} .
$$

Thus $\gamma_{v_{n}^{-1} w_{n} v_{n}}$ has to leave every compact set in \mathbb{H}^{3} and $\left\{v_{n}^{-1} w_{n} v_{n}\right\}$ is our required sequence. This proves the claim. Denote this sequence again by $\left\{w_{n}\right\}$ by using a slight abuse of notation. We further reduce $\left\{w_{n}\right\}$ to a subsequence such that for all $i>0, w_{i+1}=w_{i} g_{1} g_{2} \cdots g_{k}$ for some $k>0$ where $g_{j} \in X \cup X^{-1}$. This is a variant of Cantor diagonal process mentioned in [6].

Now let \tilde{w}_{∞} be the limit of \tilde{w}_{n}. Since $\gamma_{w_{n}}$ leaves every compact set of \mathbb{H}^{3} as $n \rightarrow \infty$, the Cannon-Thurston map \hat{i} maps the end-points of \tilde{w}_{∞} to a point $p \in \partial \mathbb{H}^{3}$. Let γ_{n} be the geodesic representing w_{n} on the boundary of the handlebody and let γ_{∞} be their Hausdorff limit. Here we appeal to Theorem 2.3, which implies that the closure of γ_{∞} must contain the ending lamination λ of M. Since $W h(\lambda, \Delta)$ is connected and has no cutpoints with respect to some Δ by Lemma 2.2 , the same is true for $W h\left(\gamma_{n}, \Delta\right)$ for large n. But for any primitive word w_{n}, this is impossible by Whitehead Lemma 2.1.

The proof of Theorem 2 can be done analogously. Call a lamination λ blocking with respect to Δ if it is in tight position and there exists some k such that every length k subword of the infinite word determined by a leaf of λ does not appear in a cyclically reduced primitive word. Lemma 4.6 in [10] can be generalized as follows:

Lemma 2.4. A connected doubly incompressible lamination λ on the boundary of a handlebody is blocking with respect to some generating set.

Proof of Theorem 2. If $M_{i}=H_{i} \cup E_{i}$ is the covering manifold corresponding to $\pi_{1}\left(S_{i}\right)$, then the end E_{i} is bilipschitz homeomorphic to an end of a simply degenerate hyperbolic manifold homeomorphic to $S_{i} \times \mathbb{R}$ [2]. Then the rest of the proof is the combination of [11] and [5]. See [7] for details.

References

[1] I. Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568, 2004, preprint.
[2] B. Bowditch, Geometric model for hyperbolic manifolds, Southhampton, 2005, preprint.
[3] D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2) (2006) 385-446.
[4] R.D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1) (1993) 1-35.
[5] S. Das, M. Mj, Addendum to ending laminations and Cannon-Thurston maps: Parabolics, arXiv:1002.2090, 2010, preprint.
[6] W.J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205-218.
[7] W. Jeon, I. Kim, On primitive stable representations of geometrically infinite handlebody hyperbolic 3-manifolds, arXiv:1003.2055, 2010, preprint.
[8] I. Kim, Divergent sequences of function groups, Differential Geom. Appl. 26 (6) (2008) 645-655.
[9] I. Kim, C. Lecuire, K. Ohshika, Convergence of freely decomposable Kleinian groups, arXiv:0708.3266, 2004, preprint.
[10] Y. Minsky, On dynamics of $\operatorname{Out}\left(F_{n}\right)$ on $P S L_{2}(\mathbb{C})$ characters, arXiv:0906.3491, 2009, preprint.
[11] M. Mj, Cannon-Thurston maps for Kleinian groups, arXiv:1002.0996, 2010, preprint.
[12] J.-P. Otal, Courants géodésiques et produits libres, Thèse d'Etat, Université de Paris-Sud, Orsay, 1988.
[13] J.R. Stallings, Whitehead graphs on handlebodies, 1996, preprint.
[14] J.H.C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936) 48-56.
[15] J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. 37 (1936) 780-782.

[^0]: E-mail addresses: eissa76@snu.ac.kr (W. Jeon), inkang@kias.re.kr (I. Kim).
 1 The second author gratefully acknowledges the partial support of NRF grant (R01-2008-000-10052-0).
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2010.07.015

