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We show that on a nonorientable surface of genus at least 7 any power of a Dehn twist
is equal to a single commutator in the mapping class group and the same is true, under
additional assumptions, for the twist subgroup, and also for the extended mapping class
group of an orientable surface of genus at least 3.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons que sur une surface non orientable de genre au moins 7 toute puissance
d’un twist de Dehn est égale à un unique commutateur dans le groupe de difféotopies et
que ceci est vrai, sous conditions additionnelles, pour le sous-groupe généré par les twists,
aussi bien que pour l’extension du groupe de difféotopies d’une surface orientable de genre
au moins 3.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let S be a closed surface of genus g . If S is nonorientable, then g is the number of projective planes in a connected
sum decomposition. The mapping class group M(S) of S is the group of isotopy classes of all, orientation preserving if S
is orientable, self-homeomorphisms of S . For orientable S , the extended mapping class group M�(S) is the group of isotopy
classes of all self-homeomorphisms of S , including those reversing orientation. For notational convenience we define M�(S)

to equal M(S) for nonorientable S .
For a two-sided simple closed curve c on S we denote by tc a Dehn twist about c. For a Dehn twist tc we always assume

that c does not bound a disc or a Möbius band, so that tc is a nontrivial element of M(S). It is well known that M(S) is
generated by Dehn twists if S is orientable. If S is nonorientable, then the twist subgroup T (S) generated by all Dehn twists
has index 2 in M(S) (cf. [9]).

For a group G let [G, G] denote the commutator subgroup generated by all commutators [a,b] = aba−1b−1. For x ∈ [G, G]
the commutator length clG(x) is the minimum number of factors needed to express x as a product of commutators. The stable
commutator length is the limit

sclG(x) = lim
n→∞

clG(xn)

n
.

Recall that the first homology group H1(G;Z) of G is isomorphic to the quotient G/[G, G].
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Fig. 1. The torus T and its embedding in a closed nonorientable surface S such that S\c1 is orientable.

Fig. 1. Le tore T et son plongement dans une surface fermée non orientable S , telle que S\c1 est orientable.

For orientable S and g � 3 it is well known that M(S) is perfect, i.e. M(S) = [M(S), M(S)] (cf. [10]), and for any Dehn
twist tc we have clM(S)(tc) = 2 and sclM(S)(tc) > 0 [1,2,5,6]. For nonorientable S the groups H1(M(S);Z) and H1(T (S);Z)

were computed by Korkmaz [4] and Stukow [11]. In particular, if g � 7 then we have [M(S), M(S)] = [T (S), T (S)] = T (S).
In this Note we prove the following:

Theorem 1.1. Let S be a closed orientable surface of genus g � 3 or a closed nonorientable surface of genus g � 7. Then for every
two-sided simple closed curve c on S and every n ∈ Z, tn

c is equal to a single commutator of elements of M�(S).

For even n Theorem 1.1 and hence also Corollary 1.3 below, follow immediately form the fact that tc is conjugate to its
inverse in M�(S) (see Remark below), and were known already, at least for orientable S [7, Remark 12].

Theorem 1.2. Let c be a two-sided simple closed curve on a closed nonorientable surface S satisfying one of the following assumptions:

– c is separating and g � 7, or
– S\c is connected and nonorientable and g � 8, or
– S\c is connected and orientable, g � 6 and g ≡ 2 mod 4.

Then for any n ∈ Z, tn
c is equal to a single commutator of elements of T (S).

The following corollary is an immediate consequence of Theorems 1.1 and 1.2 and the definition of the stable commutator
length:

Corollary 1.3. For S and c as in Theorem 1.1 or Theorem 1.2 we have respectively sclM�(S)(tc) = 0 or sclT (S)(tc) = 0.

Our proof of Theorem 1.2 fails when c is nonseparating and g = 7, or g = 4k for k � 2 and S\c is orientable. We
conjecture that also in these cases we have clT (S)(tn

c ) = 1 for any n ∈ Z.

2. Proofs

Consider a torus with three holes T . Let c1, c2, c3 be its boundary curves and let b,a1,a2,a3 be nonseparating simple
closed curves in the interior of T , such that a1,a2,a3 are pairwise disjoint, and b intersects ai transversally at one point for
i = 1,2,3 (Fig. 1). The right Dehn twists about these curves satisfy the following relations in the mapping class group of T :

– Twists about disjoint curves commute,
– tbtai tb = tai tbtai for i = 1,2,3,
– (tbta1ta2ta3 )

3 = tc1tc2tc3 .

The first two are the well known braid relations, the third is the star relation discovered by Gervais [3]. By using the braid
relations we can rewrite the star relation in the following way.

tc1tc2tc3 = (tbta1ta2ta3)(tbta1ta2ta3)(tbta1ta2ta3) = tbta2ta3(ta1tbta1)ta2(ta3tbta3)ta1ta2

= tbta2ta3tbta1(tbta2tb)ta3tbta1ta2 = (tbta2ta3tbta1ta2)(tbta2ta3tbta1ta2).

Since tci commute with all twists, for every n ∈ Z we have

tn
c = (

tbta2ta3tbta1ta2t−1
c

)n(
t−1

c tbta2ta3tbta1ta2

)n
. (1)
1 2 3
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There is a reflectional symmetry r : T → T such that r(b) = b, r(a1) = a1, r(a2) = a3, r(c1) = c1, r(c2) = c3. Since r is orien-
tation reversing it conjugates right twists to left twists, and so we have

r
(
tbta2ta3tbta1ta2t−1

c2

)−n
r = (

t−1
c3

ta3ta1tbta2ta3tb
)n

.

By the braid relations we have

t−1
c3

ta3ta1tbta2ta3tb = t−1
c3

ta1(ta3tbta3)ta2tb = t−1
c3

ta1tbta3(tbta2tb)

= t−1
c3

ta1tbta3ta2tbta2 = ta1

(
t−1

c3
tbta2ta3tbta1ta2

)
t−1
a1

.

Thus
(
t−1

c3
tbta2ta3tbta1ta2

)n = t−1
a1

r
(
tbta2ta3tbta1ta2t−1

c2

)−n
rta1 ,

and by (1)

tn
c1

= [(
tbta2ta3tbta1ta2t−1

c2

)n
, t−1

a1
r
]
. (2)

Proof of Theorem 1.1. Let S be a closed orientable surface of genus g � 3 or a closed nonorientable surface of genus g � 7.
Consider the torus T as embedded in S in such a way that the reflectional symmetry r extends to r : S → S . Then (2) holds
in M�(S). The embedding of T in S can be arranged in such a way that c1 is nonseparating in S or separating, bounding
a subsurface of arbitrary topological type. Moreover, if S is nonorientable of even genus and c1 is nonseparating then S\c1
may be orientable or not (the former case is shown in Fig. 1). It follows that for every simple closed curve c on S there is a
homeomorphism h : S → S such that h(c) = c1, for appropriate embedding of T in S . Thus tn

c = h−1tn
c1

h for n ∈ Z and, since
a conjugate of a commutator is also a commutator, we have proved Theorem 1.1. �

Recall that for a closed nonorientable surface S of genus g , H1(S;R) is a real vector space of dimension g − 1. For
f ∈ M(S) let f∗ : H1(S;R) → H1(S;R) be the induced automorphism. It turns out that the determinant homomorphism
f �→ det f∗ takes values in the group {−1,1} and its kernel is the twist subgroup T (S) (cf. [8] and [11, Corollary 6.3]).

Proof of Theorem 1.2. The idea of the proof is the same as for Theorem 1.1. The only problem is that the involution r may
not be an element of T (S), in which case it has to be replaced by a different mapping class.

Suppose that S and c satisfy one of the assumptions of the theorem. Consider T as embedded in S in such a way that
c1 = c, as in the proof of Theorem 1.1. If c is separating, then we may arrange that the component of S\c which does not
contain T is nonorientable of genus at least 2. If c is separating or nonseparating with S\c nonorientable, then N = S\T
is a nonorientable surface of genus at least 2 and hence it supports a homeomorphism h which is not a product of Dehn
twists (we may take h to be a crosscap slide or Y-homeomorphism introduced by Lickorish [8]). Since h is equal to the
identity on T , thus it commutes with twists about b, ai , ci for i = 1,2,3. Now if the involution r, which is an extension of
the reflectional symmetry of T , is in T (S), then clT (S)(tn

c ) = 1 by (2). If r /∈ T (S) then rh ∈ T (S), and clT (S)(tn
c ) = 1 by (2)

with rh in the place of r.
Now suppose that S\c1 is orientable. Fig. 1 shows S as being obtained from an orientable surface S ′ by identifying two

boundary components. The homology classes of the curves a1, b, c2, d, h, ei , f i for 1 � i � k, where g = 2(k + 3), form
a basis of H1(S;R) (note that [c1] = 0 in H1(S;R)). Now we may take r as being induced by a reflection of S ′ , so that
r∗[a1] = [a1], r∗[b] = −[b], r∗[c2] = [c2], r∗[d] = −[d], r∗[h] = [h] − [d], r∗[ei] = −[ei], r∗[ f i] = [ f i] for 1 � i � k. We see that
det r∗ = (−1)k , which means that r ∈ T (S) if and only if g ≡ 2 mod 4. �
Remark. Let c be any two-sided simple closed curve on a surface S . There is a homeomorphism h : S → S preserving c and
reversing orientation of its neighborhood. We have tc = ht−1

c h−1 and

t2n
c = tn

c tn
c = tn

c ht−n
c h−1 = [

tn
c ,h

]

for any n ∈ Z. Thus any even power of any Dehn twist on any surface S is equal to a single commutator of elements
of M�(S). Moreover, if S\c is nonorientable of genus at least 2, then we may take h ∈ T (S) by composing it if necessary
with a homeomorphism fixing c which is not a product of Dehn twists. In particular, if c is a nonseparating two-sided curve
on a closed nonorientable surface of genus 7 then sclT (S)(tc) = 0, which slightly improves Corollary 1.3.

References

[1] V. Braungardt, D. Kotschick, Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality, Trans. Amer. Math. Soc. 355 (2003)
3217–3226.

[2] H. Endo, D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001) 169–175.
[3] S. Gervais, Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc. 348 (1996) 3097–3132.
[4] M. Korkmaz, First homology group of mapping class group of nonorientable surfaces, Math. Proc. Cambridge Philos. Soc. 123 (1998) 487–499.
[5] M. Korkmaz, B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (2001) 1545–1549.



926 B. Szepietowski / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 923–926
[6] M. Korkmaz, Stable commutator length of a Dehn twist, Michigan Math. J. 52 (2004) 23–31.
[7] D. Kotschick, Quasi-homomorphisms and stable lengths in mapping class groups, Proc. Amer. Math. Soc. 132 (2004) 3167–3175.
[8] W.B.R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963) 307–317.
[9] W.B.R. Lickorish, On the homeomorphisms of a non-orientable surface, Proc. Cambridge Philos. Soc. 61 (1965) 61–64.

[10] J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978) 347–350.
[11] M. Stukow, The twist subgroup of the mapping class group a nonorientable surface, Osaka J. Math. 46 (2009) 717–738.


	On the commutator length of a Dehn twist
	Introduction
	Proofs
	References


