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The majorization order on R
n induces a natural partial ordering on the space of

univariate hyperbolic polynomials of degree n. We characterize all linear operators on
polynomials that preserve majorization, and show that it is sufficient (modulo obvious
degree constraints) to preserve hyperbolicity.
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r é s u m é

L’ordre de majorisation de R
n induit un ordre partiel naturel sur l’espace des polynômes

hyperboliques univariés de degré n. Nous caractérisons les opérateurs linéaires sur
ces polynômes préservant l’ordre donné et montrons que seule la préservation de
l’hyperbolicité suffit (modulo des contraintes évidentes sur le degré).

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

A polynomial in R[z] is hyperbolic if it has only real zeros. The space Hn of all hyperbolic polynomials of degree n
is equipped with a natural partial ordering defined in terms of the majorization order on weakly increasing vectors in
R

n . If x = (x1, . . . , xn) and y = (y1, . . . , yn) are weakly increasing vectors in R
n , then y majorizes x (denoted x ≺ y) if∑n

i=1 xi = ∑n
i=1 yi , and

∑k
i=0 xn−i �

∑k
i=0 yn−i for each 0 � k � n − 2. Given a polynomial p ∈ Hn arrange the zeros (count-

ing multiplicities) of p in a weakly increasing vector Z(p) ∈ R
n. If p,q ∈ Hn we say that p is majorized by q, denoted p ≺ q,

if p and q have the same leading coefficient and Z(p) ≺ Z(q). In particular if p ≺ q, then the top two coefficients of p and
q are the same. The majorization order on Hn was studied in [1,2,4,6,12]. Particular interest has been given to the question
of which linear operators on polynomials preserve majorization. The purpose of this note is to characterize such operators.

Let Rn[z] be the linear space of all real polynomials of degree at most n. A linear operator T : Rn[z] → R[z] preserves
majorization if T (p) ≺ T (q) whenever p,q ∈ Hn are such that p ≺ q. Recall that two hyperbolic polynomials have interlacing
zeros if

x1 � y1 � x2 � y2 � · · · or y1 � x1 � y2 � x2 � · · · ,
where x1 � x2 � · · · and y1 � y2 � · · · are the zeros of p and q, respectively. We say that a polynomial p(z1, . . . , zn) ∈
C[z1, . . . , zn] is stable if it is nonzero whenever all variables have positive imaginary parts. A linear operator T : Rn[z] → R[z]
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is called degenerate if dim(T (Rn[z])) � 2. The symbol of a linear operator T : Rn[z] → R[z] is the bivariate polynomial
F T (z, w) = ∑n

k=0

( n
k

)
T (zk)wn−k . The following theorem is our main result and will be proved in the next section:

Theorem 1. Suppose that T : Rn[z] → R[z] is a linear operator, where n � 1. Then T preserves majorization if and only if

(1) T is nondegenerate and T (Hn) ⊆ Hm for some m, or
(2) T is of the form T (

∑n
k=0 ak zk) = an T (zn) + an−1T (zn−1), where T (zn) �≡ 0 is hyperbolic, and either T (zn−1) ≡ 0 or T (zn−1) is a

hyperbolic polynomial which is not a constant multiple of T (zn), and T (zn−1) and T (zn) have interlacing zeros.

Moreover, condition (1) is equivalent to that T is nondegenerate, and F T (z, w) or F T (z,−w) is stable and such that deg(T (zn)) >

deg(T (zk)) for all k < n.

Theorem 1 complements [3] where the authors characterized all linear operators on polynomials preserving hyperbolicity.
Also, Theorem 1 answers in the affirmative several questions raised in [1,2].

2. Proof of Theorem 1

We will use the algebraic characterization of hyperbolicity preservers obtained in [3]:

Theorem 2. Suppose that T : Rn[z] → R[z] is a linear operator, where n � 1. Then T preserves hyperbolicity if and only if

• T is degenerate and is of the form

T (p) = α(p)P + β(p)Q ,

where α,β : Rn[z] → R are linear functionals and P , Q are hyperbolic polynomials with interlacing zeros, or
• T is nondegenerate and F T (z, w) is stable, or
• T is nondegenerate and F T (z,−w) is stable.

Suppose first that T is degenerate. If T is as in (2) of Theorem 1, then T preserves hyperbolicity by Obreshkoff’s theorem,
see e.g. [3, Theorem 10]. Also, T (p) = T (q) whenever p ≺ q which proves that (2) is sufficient. Note that if p = ∑n

k=0 ak zk ∈
Hn , then an(z + an−1/nan)n ≺ p. Hence if T preserves majorization, then the degree and the top two coefficients of T ( f )
only depend on the top two coefficients of p. Since T is of the form T (p) = α(p)P +β(p)Q , where α and β are functionals
(by Theorem 2) it is not hard to see that T has to be of the form (2). Henceforth, we assume that T is nondegenerate. We
start by proving that (1) is sufficient.

Lemma 3. Suppose that T : Rn[z] → R[z] is a nondegenerate linear operator preserving hyperbolicity. Then there are numbers 0 �
K � L � M � N � n such that

(1) T (zk) ≡ 0 if k < K or k > N;
(2) deg(T (zk+1)) = deg(T (zk)) + 1 for all K � k < L;
(3) deg(T (zk)) � deg(T (zL)) = deg(T (zM)) for all L � k � M, and
(4) deg(T (zk+1)) = deg(T (zk)) − 1 for all M � k < N.

Proof. By Theorem 2, either F T (z, w) or F T (z,−w) is stable. The lemma is a simple consequence of the fact that the
support of a stable polynomial is a jump system, see [5, Theorem 3.2]. �
Remark 1. Suppose that T : Rn[z] → R[z] is a nondegenerate linear operator such that T (Hn) ⊆ Hm . Since any hyperbolic
polynomial of degree at most n is the limit of degree n polynomials, it follows from Hurwitz’ theorem on the continuity of
zeros that T preserves hyperbolicity. But then L = M = N = n, since otherwise one could produce two polynomials p,q ∈ Hn

such that deg(T (p)) �= deg(T (q)).

To any nondegenerate hyperbolicity preserver, we associate a sequence {γk(T )}n
k=0 by defining γk(T ) to be the coefficient

in front of zr+k in T (zk), where r = deg(T (zK )) − K and K is as in Lemma 3. We claim that the linear operator Γ : Rn[z] →
R[z] defined by Γ (zk) = γk(T )zk preserves hyperbolicity. Indeed,

Γ
(

p(z)
) = lim

ρ→0
(ρ/z)r T

(
p(ρz)

)
(z/ρ),

so the claim follows from Hurwitz’ theorem.
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Remark 2. It is known that such sequences have either constant sign or are alternating in sign, and that the indices k for
which γk(T ) �= 0 form an interval, see e.g. [7, Theorem 3.4].

To prove Theorem 1 we will use an important result on hyperbolic polynomials in several variables. A homogeneous
polynomial p ∈ R[z1, . . . , zn] is said to be hyperbolic with respect to a vector e ∈ R

n if p(e) �= 0 and for all vectors α ∈ R
n

the polynomial p(α + et) ∈ R[t] has only real zeros. The following theorem, proved by Lewis, Parrilo and Ramana based
heavily on the work of Dubrovin, Helton–Vinnikov and Vinnikov, settled the so-called Lax conjecture.

Theorem 4. (See [9,10].) Let p ∈ R[x, y, z] be a homogeneous polynomial of degree m. Then p is hyperbolic with respect to e = (1,0,0)

if and only if there exist two real symmetric m × m matrices B and C such that

p(x, y, z) = p(e)det(xI − yB − zC).

Theorem 4 enables us to use the following well-known convexity result in matrix theory due to K. Fan.

Lemma 5. (See [8].) Let A be a complex Hermitian matrix of size n × n, and denote by λ1(A) � · · · � λn(A) its eigenvalues arranged
in weakly increasing order. For each 1 � k � n the function

A �→
k∑

i=1

λn+1−i(A)

is convex on the real space of Hermitian n × n matrices.

Lemma 6. Let T : Rn[z] → R[z] be a nondegenerate linear operator satisfying T (Hn) ⊆ Hm, where n � 2. Let further r(z) ∈ Hn−2 be
monic, and s be a fixed real number. For t ∈ R, let x1(t) � · · · � xm(t) be the zeros of the polynomial T (r(z)((z + s)2 − t2)). Then for
each 1 � k � m,

R 	 t �→
k∑

i=1

xm+1−i(t) (1)

is a convex and even function on R. Moreover,

T
(
r(z)

(
(z + s)2 − t2

1

)) ≺ T
(
r(z)

(
(z + s)2 − t2

2

))
,

whenever 0 � t1 � t2 .

Proof. Set g(z) = T (r(z)(z + s)2), h(z) = T (r(z)), and m = deg g . If h ≡ 0 there is nothing to prove so we may assume that
deg h � 0. Then deg h = m − 2 by Remark 1. We claim that the homogeneous degree m polynomial in three variables

f (z1, z2, z3) = zm
3 g(z1/z3) − z2

2zm−2
3 h(z1/z3)

is hyperbolic with respect to the vector e = (1,0,0). If α = (a,b,0), then

f (α + et) = γm(T )(a + t)m − b2γm−2(T )(a + t)m−2

has only real zeros since, by Remark 2, γm(T )γm−2(T ) > 0. Also, if α = (a,b, c) where c �= 0, then

f (α + et) = cm T
(
r(z)

(
z2 − b2/c2))∣∣

z=(a+t)/c

has only real zeros, and the claim follows.
By Theorem 4 there exist real symmetric m × m matrices B and C such that

f (z1, z2, z3) = f (e)det(z1 I − z2 B − z3C).

It follows that for any fixed t ∈ R the zeros of the polynomial

T
(
r(z)

(
(z + s)2 − t2)) = f (z, t,1) = g(z) − t2h(z)

are precisely the eigenvalues of the real symmetric matrix t B + C . Note also that
∑m

i=1 xi(t) is constant in t , since the two
top coefficients of f (z, t,1) come from g(z). The lemma now follows from Lemma 5. �

To complete the proof of the sufficiency of (1) in Theorem 1 we need a well-known lemma due to Hardy, Littlewood
and Pólya, see [11]. For simplicity, we formulate it by means of polynomials in Hn . Given p,q ∈ Hn with n � 2, Z(p) =
(x1, . . . , xn) and Z(q) = (y1, . . . , yn) we say that p is a pinch of q if there exist 1 � i � n − 1 and 0 � t � (yi+1 − yi)/2
such that xi = yi + t , xi+1 = yi+1 − t , and xk = yk for k �= i. Note that if p is a pinch of q, then we may write p and q as
p(z) = r(z)((z + s)2 − t2) and q(z) = r(z)((z + s)2 − t2), where r is a hyperbolic polynomial and s, t1, t2 ∈ R with 0 � t1 � t2.
1 2
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Lemma 7. If p,q ∈ Hn, n � 2, are such that p ≺ q, then p may be obtained from q by a finite number of pinches.

Suppose now that p ≺ q ∈ Hn where n � 2 and that T is as in (1) of Theorem 1. By Lemma 7 there are polynomials
p = p0, p1, . . . , pk = q in Hn such that pi−1 is a pinch of pi for all 1 � i � k. By Lemma 6, T (pi−1) ≺ T (pi) for all 1 � i � k
so by transitivity T (p) ≺ T (q). The case when n = 1 follows from the case when n = 2 by considering the map T ′ defined
by T ′( f ) = T ( f ′).

To prove the remaining direction in Theorem 1 assume that T preserves majorization. If deg(T (zn)) > deg(T (zn−1)),
then by Lemma 3, deg(T (p)) = deg(T (q)) for any two polynomials p,q of degree n. In particular T (Hn) ⊆ Hm for some
m. Assume that deg(T (zn)) � deg(T (zn−1)). Recall that deg(T (p)) and the top two coefficients of T (p) only depend on the
top two coefficients of p. This can only happen if deg(T (zn−2)) � deg(T (zn−1)) − 2, since otherwise the top two coefficients
of T (zn − a2zn−2) would depend on the real parameter a. But then, by Lemma 3, T (1) ≡ · · · ≡ T (zn−2) ≡ 0 and T is thus
degenerate contrary to the assumptions.

The final sentence in Theorem 1 follows from Lemma 3 and Theorem 2.
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