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The Hilbert transform H can be extended to an isometry of L2. We prove this fact
working directly on the principal value integral, completely avoiding the use of the
Fourier transform and the use of orthogonal systems of functions. Our approach here is
a byproduct of our attempts to understand the rearrangement properties of H .
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r é s u m é

La transformation de Hilbert H peut être étendue à une isometrie dans L2. On demontre
cette propriété en utilsant directement la valeur principale de l’intégrale, sans utiliser la
transformation de Fourier, ni des systèmes de fonctions orthogonales. L’approche proposée
est liée à nos tentative de comprendre le proprietés de réarrangement de H .

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Hilbert transform H can be defined with the principal value integral,

H f (x) = p.v.
1

π

+∞∫
−∞

f (x − t)

t
dt = lim

ε→ 0

1

π

∫
|t|>ε

f (x − t)

t
dt. (1)

The above formula requires some regularity for f , but in fact H can be extended to a linear operator that maps bound-
edly L p(R) onto L p(R) for 1 < p < ∞. When p = 2, it turns out that H is an isometry, namely, for any f ∈ L2(R) we
have,

‖H f ‖2 = ‖ f ‖2. (2)

This fact follows easily from the representation of H as a Fourier multiplier operator

H f (x) =
+∞∫

−∞
(−i sgn ξ) f̂ (ξ)e2π iξx dξ, (3)
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but it is not obvious how to obtain it directly from the convolution definition (1) while avoiding (3). In his recent paper [3]
J. Duoandikoetxea shows one way to do this, and he points out in the introduction that many “classical” direct proofs of the
L2 boundedness of H as a convolution fail to prove that the best constant is 1, let alone that H is actually an isometry. His
technique avoids a direct use of the Fourier transform, but it relies on the orthogonality and completeness of the Hermite
functions sequence.

We provide another real-variable proof of (2) that avoids any reference to the Fourier transform and also avoids the use
of orthogonal systems of functions. We only use changes of variables in explicit integrals together with approximation in L2

with step functions. We should mention that our argument here shares some of the same ideas that we used in [2] to give
an alternative proof of a theorem of Stein and Weiss: the distribution function of the Hilbert transform of a characteristic
function of a set only depends on the Lebesgue measure of such a set.

2. A claim from which the isometry result follows

Let us denote by χ[a,b] the characteristic function of an interval. Clearly we have

Hχ[a,b](x) = 1

π

b∫
a

dt

x − t
= 1

π
log

∣∣∣∣ x − a

x − b

∣∣∣∣.
We claim that the isometry property (2) holds in two very special cases: when f is the characteristic function of one

interval, and when f is the characteristic function of the union of two disjoint intervals. Namely, assuming a < b < c < d,
we claim that

‖Hχ[a,b]‖2
2 = 1

π2

+∞∫
−∞

(
log

∣∣∣∣ x − a

x − b

∣∣∣∣
)2

dx = b − a; (4)

‖Hχ[a,b]∪[c,d]‖2
2 = 1

π2

+∞∫
−∞

(
log

∣∣∣∣ x − a

x − b

∣∣∣∣ + log

∣∣∣∣ x − c

x − d

∣∣∣∣
)2

dx = (b − a) + (d − c). (5)

Assuming the above let us proceed towards our main goal. First we observe that (4) and (5) imply the following orthog-
onality property for the Hilbert transforms of the characteristic functions of two disjoint intervals

2

+∞∫
−∞

Hχ[a,b](x) · Hχ[c,d](x)dx =
+∞∫

−∞

(
Hχ[a,b](x) + Hχ[c,d](x)

)2
dx

−
+∞∫

−∞

(
Hχ[a,b](x)

)2
dx −

+∞∫
−∞

(
Hχ[c,d](x)

)2
dx = 0. (6)

We then consider a general simple step function g(x) = ∑m
k=1 αkχ[ak,bk](x) where the m intervals [ak,bk] are essentially

disjoint, and the coefficients αk are real. We obtain,

‖H g‖2
2 =

+∞∫
−∞

(
m∑

k=1

αk Hχ[ak,bk](x)

)2

dx =
m∑

k=1

α2
k (bk − ak) = ‖g‖2

2, (7)

because expanding the square in the second term of the above equality we get that the “mixed” terms are zero by (6), while
each square term contributes one positive term to the sum on the r.h.s. by (4).

Finally, it is well known that any f ∈ L2(R) can be approximated arbitrarily well by a step function g chosen as in (7)
and it follows that (2) holds in general.

3. Proof of the claim

Formula (4) can be written:

‖Hχ[a,b]‖2
2 = 1

π2

+∞∫
−∞

(
log

∣∣∣∣ x − a

x − b

∣∣∣∣
)2

dx = 1

π2

+∞∫
−∞

(
log

∣∣∣∣ x − b

x − a

∣∣∣∣
)2

dx.

The function y = x−b
x−a is monotonic increasing for all x �= a and intersects the line y = t in the point x(t) = at−b

t−1 . A change
of variable therefore yields:
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‖Hχ[a,b]‖2
2 = 1

π2

+∞∫
−∞

(
log |t|)2

x′(t)dt = 1

π2

+∞∫
−∞

(log |t|)2

(t − 1)2
dt · (b − a). (8)

Formula (5) can be written

‖Hχ[a,b]∪[c,d]‖2
2 = 1

π2

+∞∫
−∞

(
log

∣∣∣∣ (x − b)(x − d)

(x − a)(x − c)

∣∣∣∣
)2

dx. (9)

The function y = (x−b)(x−d)
(x−a)(x−c) is monotonic increasing for all x �= a, c and intersects the line y = t in two points x1(t)

and x2(t) which are the two solutions of the second degree equation (x − b)(x − d)t = (x − a)(x − c) with parameter t .
We can label them in such a way that x1(t) provides a bijection between (−∞,+∞) and (a, c) while x2(t) provides a
bijection between (−∞,+∞) and (−∞,a) ∪ (c,+∞). From the equation it is easy to see that x1(t) + x2(t) = (b−a)+(d−c)

(1−t)

and therefore x′
1(t) + x′

2(t) = (b−a)+(d−c)
(1−t)2 . We have:

‖Hχ[a,b]∪[c,d]‖2
2 = 1

π2

[ ∫
(a,c)

(
log

∣∣∣∣ (x − b)(x − d)

(x − a)(x − c)

∣∣∣∣
)2

dx +
∫

(−∞,a)∪(c,+∞)

(
log

∣∣∣∣ (x − b)(x − d)

(x − a)(x − c)

∣∣∣∣
)2

dx

]

= 1

π2

+∞∫
−∞

(
log |t|)2[

x′
1(t) + x′

2(t)
]

dt = 1

π2

+∞∫
−∞

(log |t|)2

(t − 1)2
dt · [(b − a) + (d − c)

]
. (10)

The integral factor 1
π2

∫ +∞
−∞

(log |t|)2

(t−1)2 dt appears both in (8) and (10). If we show that this factor is equal to 1, then our

claim follows. We have

+∞∫
−∞

(log |t|)2

(t − 1)2
dt =

+∞∫
0

(log t)2
[

1

(t − 1)2
+ 1

(t + 1)2

]
dt

=
1∫

0

(log t)2
[

1

(t − 1)2
+ 1

(t + 1)2

]
dt +

1∫
0

(
log

1

u

)2[ 1

( 1
u − 1)2

+ 1

( 1
u + 1)2

]
1

u2
du

= 2

1∫
0

(log t)2

[ +∞∑
k=0

(k + 1)tk +
+∞∑
k=0

(−1)k(k + 1)tk

]
dt

= 4

1∫
0

(log t)2
+∞∑
n=0

(2n + 1)t2n dt = 4

+∞∫
0

(−s)2
+∞∑
n=0

(2n + 1)e−(2n+1)s ds

= 8
+∞∑
n=0

1

(2n + 1)2
= 8

π2

8
= π2.

Our claim holds, together with the main result.

4. Final remarks

We can check, avoiding the use of the Fourier transform, also that H : L2 → L2 is a surjective map. One way to do
this is to show, starting from (1) that H is an anti-self adjoint operator, namely 〈H f , g〉 = −〈 f , H g〉 where 〈 f , g〉 =∫ +∞
−∞ f (x)g(x)dx. The above identity holds when f and g are Schwartz functions and it can be extended to L2 in a standard

way. If (2) were just a partial isometry, there would be a function g0 ∈ L2 orthogonal to H f for all f ∈ L2. In other words
〈H f , g0〉 = −〈 f , H g0〉 = 0, but this implies g0 ≡ 0. We have given before a self-contained proof of (4) and (5), but actually
they are both special cases of Lemma 2.2 in [2], where we show that for any 1 < p < ∞, we have:

+∞∫ ∣∣∣∣∣H

(
n∑

k=1

χ[ak,bk](x)

)∣∣∣∣∣
p

dx = 4(1 − 2−p)

π p
ζ(p)Γ (p + 1)

n∑
k=1

(bk − ak).
−∞
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This formula expresses a rearrangement property of the Hilbert transform, because if we apply H to a step function f
whose steps are all at the same height then the norm ‖H f ‖p is equal to the total length of its steps times some explicit
function of p and this is invariant with respect to the horizontal positions of these steps. Also (7) expresses a rearrangement
property, telling us that if we apply the Hilbert transform H to a step function f whose steps have arbitrary height then
the L2 norm ‖H f ‖2 is equal to ‖ f ‖2 and, in particular, it is invariant under re-shuffling of the horizontal positions of its
steps (at different heights) provided we avoid overlapping.

The norm ‖H f ‖p for f a step function f whose steps have arbitrary height, is maximized or minimized in correspon-
dence to certain symmetric rearrangements of its steps, and the situation is different when p > 2 or p < 2. We conjecture
that the configurations that maximize the L p norm when p > 2, minimize it when p < 2, and vice versa. The case p = 2 is
very special with respect to these properties, because the minimizers coincide with the maximizers. We omit our precise
putative statements here because this is still work in progress, but we point out that a rearrangement theorem that goes in
this direction (for the case p < 2 and for the conjugate operator on the circle instead of H on the line) can be found in [1].
Another related result is our Corollary 2, p. 319, in [4].
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