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Relying on recent results on Harnack inequalities for equations of p-Laplacian type, we
prove Liouville-type estimates for solutions to these equations, both in the degenerate
(p > 2), and in the singular (1 < p < 2) range.
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r é s u m é

En utilisant des résultats récents sur l’inégalité de Harnack pour les équations type
p-laplacien, on établit des théorèmes de type Liouville pour les solutions de ces équations,
dans le cas dégénéré p > 2, ainsi bien que dans le cas singulier 1 < p < 2.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On sait que, pour les solutions de l’équation de la chaleur, des limitations unilatérales ne sont pas suffisantes pour
garantir qu’elles sont constantes.

Des résultats analogues sont valables pour les solutions faibles des équations (1), (2) dans le cas p > 2.
Le résultat fondamental de cette Note montre que, dans l’intervalle singulier sur-critique (3), les solutions faibles de (1),

(2), définies dans tout R
N+1 et bornées inférieurment (ou supérieurment) sont en fait constantes (Théorème 1.2).

Ce théorème n’est plus vrai quand p est dans l’intervalle singulier critique et sous-critique (4), comme on peut voir,
grâce à certaines solutions explicites de (1)′ dans cet intervalle.

Dans le cas dégénéré (p > 2) il est nécessaire de supposer des limitations soit inférieures soit supérieures, pour pouvoir
garantir que la solution est constante. Il est possible de formuler ces limitations bilatérales de différentes façons, comme on
le montre dans le Théorème 1.1 et dans les Propositions 1.1, 1.2.

1. Liouville-type theorems

For T ∈ R let ST denote the semi-infinite strip

ST = R
N × (−∞, T ).
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Let u be a non-negative, local, weak solution to the quasi-linear parabolic equation

u ∈ C loc
(−∞, T ; L2

loc

(
R

N)) ∩ Lp
loc

(−∞, T ; W 1,p
loc

(
R

N))
,

ut − div A(x, t, u, Du) = 0 weakly in ST , (1)

for p > 1, where A : ST → R
N , is only assumed to be measurable and subject to the structure conditions{

A(x, t, u, Du) · Du � Co|Du|p∣∣A(x, t, u, Du)
∣∣ � C1|Du|p−1 a.e. in ST (2)

where Co and C1 are given positive constants. The prototype is

ut − div |Du|p−2 Du = 0, in ST . (1)′

The modulus of ellipticity of this class of equation is |Du|p−2 and accordingly they are degenerate for p > 2 and singular
for 1 < p < 2.

Harmonic functions in R
N with one-sided bound, are constant. This, known as the Liouville theorem, is solely a conse-

quence of the Harnack inequality. As such it extends to solutions to homogeneous, quasi-linear, elliptic partial differential
equations in R

N with one-sided bound.
This property does not extend to caloric functions in R

N × R, as a one-sided bound is not sufficient to imply that they
are constant. The function

R × R � (x, t) → u(x, t) = ex+t

is a non-negative, non-constant solution of the heat equation in R × R. The Liouville theorem continues to be false for non-
negative solutions to degenerate p-Laplacian type equations (p > 2). The one-parameter family of non-negative functions
defined in the whole R × R

u(x, t; c) = A(1 − x + ct)
p−1
p−2
+ , where A = c

1
p−2

(
p − 2

p − 1

) p−1
p−2

is a non-negative, non-constant, weak solution to (1)′ in R
2.

The main result of this note is that the Liouville property while false for p in the degenerate range p > 2, it does actually
holds true for p in the singular, super-critical range

2N

N + 1
< p < 2 (3)

and then it is false again for p in the singular, critical, and sub-critical range

1 < p � 2N

N + 1
. (4)

While some results appear in the literature for linear and coercive equations (p = 2) (see for example [4–6]), to our knowl-
edge, no results are known for degenerate (p > 2) or singular (1 < p < 2) quasi-linear equations of the type of (1)–(2).

1.1. Two-sided bounds and Liouville-type theorems in the degenerate range p > 2

Henceforth we let u be a continuous, local, weak solution to (1)–(2) in ST for p > 2.

Theorem 1.1. If u is bounded in ST , then u is constant.

The next proposition asserts that if a one-sided bound is available, then it suffices to verify the two-sided bound only at
some time level.

Proposition 1.1. Let u be bounded below in ST and assume that

sup
RN

u(·, s) = Ms < +∞ for some s < T .

Then u is constant in Ss.

It has been observed that a one-sided bound on u is not sufficient to infer that u is constant in S T . Such a conclusion
however holds if u has a two-sided bound as indicated by Theorem 1.1. Consider the family of functions

u(x, t) = C(N, p)

( |x|p ) 1
p−2
T − t
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defined in ST , where

C(N, p) =
[

1

λ

(
p − 2

p

)p−1] 1
p−2

and λ = N(p − 2) + p.

One verifies that this solves the prototype equation (1)′ in ST , for any p > 2, and it blows up as t → T , for all x ∈ R
N − {0}.

This suggests that if u is defined in the whole R
N × R, a condition weaker than a two-sided bound might imply that u is

constant. The next proposition is in this direction; it asserts that it suffices to check the two-sided boundedness of u at a
single point y ∈ R

N , for large times, to conclude that u is constant.

Proposition 1.2. Let u be defined and bounded below in R
N × R. If

lim
s→+∞ u(y, s) = α for some y ∈ R

N and some α ∈ R,

then u is constant.

1.2. One-sided bounds and Liouville-type theorems in the singular super-critical range (3)

Theorem 1.2. Let u be a continuous, local, weak solution to the singular, quasi-linear equation (1)–(2) in R
N ×R, for p in the singular,

super-critical range (3). If u has a one-sided bound, then it is constant.

The theorem is false for p in the singular, critical and sub-critical range (4). Consider the two-parameter family of
functions

u(x, t) = (T − t)
N+2

4+
(
a + b|x| 2N

N−2
)− N

2 ,

N > 2, p = 2N

N + 2
<

2N

N + 1

where a > 0 and T are parameters, and

b = b(N,a) = N − 2

N2

(
N + 2

4Na

) N+2
N−2

.

They are non-negative, non-constant, locally bounded, weak solutions to the prototype p-Laplacian equation (1)′ in R
N × R.

For the critical value 2N
N+1 the function

u(x, t) = (|x| 2N
N−1 + ebt)− N−1

2 ,

b = 2N
2N

N+1

N − 1
, N � 2, p = 2N

N + 1

is a non-negative, non-constant solution to (1)′ in R
N × R.

2. Intrinsic Harnack estimates [1,3]

Let u be a continuous, non-negative, local, weak solution to (1)–(2). Fix (xo, to) ∈ ST such that u(xo, to) > 0 and construct
the cylinders

(xo, to) + Q ±
ρ (θ) = Bρ(xo) × (

to ± θρ p)
(5)

where Bρ(xo) is the ball in R
N centered at xo and of radius ρ , and

θ = δu(xo, to)
2−p (6)

for a constant δ > 0. These cylinders are “intrinsic” to the solution since their height is determined by the value of u at
(xo, to). The point (xo, to) and the constant δ being determined, we let ρ > 0 be so that

(xo, to) + Q ±
8ρ(θ) ⊂ ST . (7)

Theorem 2.1. (See [1,2].) Let u be a continuous, non-negative, local, weak solution to the degenerate equations (1)–(2) in S T , for p > 2.
There exist constants δ,γ > 1 depending only upon the data {p, N, Co, C1}, such that for all intrinsic cylindersv as in (5)–(7), there
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holds

γ −1 sup
Bρ(xo)

u
(·, to − θρ p)

� u(xo, to) � γ inf
Bρ(xo)

u
(·, to + θρ p)

. (8)

The constants γ and δ deteriorate as p → ∞, but they are “stable” as p → 2. Thus by formally letting p → 2 in (8) one
recovers the classical Moser’s Harnack inequality [7].

Theorem 2.2. (See [3,2].) Let u be a continuous, non-negative, local, weak solution to the singular equations (1)–(2), in S T , for p in
the super-critical range (3). There exist constants δ ∈ (0,1) and γ > 1, depending only upon the data {p, N, Co, C1}, such that for all
intrinsic cylinders as in (5)–(7), there holds

γ −1 sup
Bρ(xo)

u(·,σ ) � u(xo, to) � γ inf
Bρ(xo)

u(·, τ ) (9)

for any pair of time levels σ , τ in the range

to − δu(xo, to)
2−pρ p � σ , τ � to + δu(xo, to)

2−pρ p . (10)

The constants δ and γ −1 tend to zero as either p → 2 or p → 2N
N+1 .

Both, right and left inequalities in (9) are insensitive to the times σ ,τ , provided they range within the time-intrinsic
geometry of (5)–(7). For σ = τ = to the theorem yields

Corollary 2.1 (The Elliptic Harnack Inequality [3]). Let u be a continuous, non-negative, local, weak solution to the singular equations
(1)–(2) for p in the super-critical range (3). Then for all intrinsic cylinders as in (5)–(7), there holds

γ −1 sup
Bρ(xo)

u(·, to) � u(xo, to) � γ inf
Bρ(xo)

u(·, to). (11)

The right and left inequalities in (9) are simultaneously forward, backward and elliptic Harnack estimates. Inequalities of
this type are false for non-negative solutions to the heat equation [7]. This is reflected in that the constants δ and γ −1 tend
to zero as p → 2. These inequalities loose meaning also as p tends to the critical value 2N

N+1 . The range (3) of p is optimal
for Theorem 2.2 and Corollary 2.1 to hold [3].

3. Proofs of the Liouville-type statements

Assume p > 2. If u is bounded above (below) in ST set

M = sup
ST

u
(

m = inf
ST

u
)

and for points (y, s) ∈ ST for which M > u(y, s), (u(y, s) > m respectively) construct the intrinsic, backward p-paraboloid(s)

P M(y, s) = {
(x, t) ∈ ST |t − s � −δ

[
M − u(y, s)

]2−p|x − y|p}
(

Pm(y, s) = {
(x, t) ∈ ST |t − s � −δ

[
u(y, s) − m

]2−p|x − y|p})
,

where δ is the constant in the intrinsic Harnack inequality of Theorem 2.1. The proof of Theorem 1.1 is an immediate
consequence of the following:

Lemma 3.1. Let u be bounded below (above) in ST . Then for all x ∈ R
N

lim
t→−∞ u(x, t) = inf

ST
u

(
lim

t→−∞ u(x, t) = sup
ST

u
)

and the limit is uniform in any p-paraboloid Pm(y, s) (P M(y, s) respectively).

Proof. Having fixed ε > 0, there exists (yε, sε) ∈ ST , such that

u(xε, tε) − m = ε

γ

where γ is the constant in the intrinsic, backward Harnack inequality in (8). Applying such inequality to (u − m), gives

m � u(y, s) � m + ε, for all (y, s) ∈ Pm(yε, sε).

Now, for all fixed x ∈ R
N , the half-line [t < T ] × {x} enters the p-paraboloid Pm(yε, sε) for some t . �
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Proof of Proposition 1.1. May assume m = 0. The assumption implies

0 � u(y, s) � Ms < ∞ for all y ∈ R
N .

By the backward, intrinsic Harnack inequality (8)

0 � u � γ Ms in Pm(y, s) for all y ∈ R
N .

Hence 0 � u � γ Ms in Ss , and by Theorem 1.1 u is constant in Ss . �
Proof of Proposition 1.2. Assume m = 0, and α > 0. There exists a sequence {sn} → ∞, such that for all arbitrary but fixed
ε > 0, there exists nε ∈ N such that

α − ε < u(y, sn) < α + ε, for all n � nε.

Fix s > snε , and define a sequence of radii {ρn}, such that

sn −
(

c

α + ε

)p−2

ρ
p
n = s ⇒ ρn =

[
(sn − s)

(
α + ε

c

)p−2] 1
p

.

By the intrinsic, backward Harnack inequality in (8)

sup
Bρn

u

(
·, sn −

(
c

u(y, sn)

)p−2

ρ
p
n

)
� γ u(y, sn) � γ (α + ε)

which we rewrite as

sup
Bρn

u(·, s) � γ (α + ε).

Now let n → ∞ by keeping s > snε fixed. Then ρn → ∞ and the previous inequality implies

sup
RN

u(·, s) = Ms � γ (α + ε).

The conclusion follows from Proposition 1.1, since s > snε is arbitrary. �
Remark 3.1. Assuming α > 0 for simplicity, the same argument continues to hold, if there exists a sequence {(yn, sn)} ⊂
R

N × R and s ∈ R, such that sn → +∞,

sn − s =
(

c

α

)p−2

|yn|p,

and limn→+∞ u(yn, sn) = α.

Proof of Theorem 1.2. It suffices to assume that u is non-negative and non-constant. Fix (xo, to) ∈ R
N × R such that

u(xo, to) > 0. By the Harnack inequality (11), for any ρ > 0,

u(xo, to) � γ inf
Bρ(xo)

u(·, to).

Now let ρ → +∞ and deduce that u(x, to) = 0 for all x ∈ R
N . The left-hand side, intrinsic Harnack inequality (9)–(10) now

implies that u ≡ 0. �
References

[1] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equation, Acta Math. 200 (2008) 181–209.
[2] E. DiBenedetto, U. Gianazza, V. Vespri, Alternative forms of the Harnack inequality for non-negative solutions to certain degenerate and singular parabolic

equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (9) Rend. Lincei Mat. Appl. 20 (2009) 369–377.
[3] E. DiBenedetto, U. Gianazza, V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic

partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) IX (2010) 385–422.
[4] R.Ya. Glagoleva, Liouville theorems for the solution of second order linear parabolic equations with discontinuous coefficients, Math. Zametki 5 (1969)

599–606.
[5] R.Ya. Glagoleva, Phragmén–Lindelöf type theorems and Liouville theorems for a linear parabolic equation, Math. Zametki 37 (1985) 119–124.
[6] A.E. Kogoj, E. Lanconelli, Liouville theorems in halfspaces for parabolic hypoelliptic equations, Ric. Mat. 55 (2006) 267–282.
[7] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964) 101–134.


	Liouville-type theorems for certain degenerate and singular parabolic equations
	Version française abrégée
	Liouville-type theorems
	Two-sided bounds and Liouville-type theorems in the degenerate range p>2
	One-sided bounds and Liouville-type theorems in the singular super-critical range (3)

	Intrinsic Harnack estimates DBGV-acta,DBGV-sing
	Proofs of the Liouville-type statements
	References


