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This Note studies type-definable groups in C-minimal structures. We show first for some
of these groups, that they contain a cone which is a subgroup. This result will be applied
to show that in any geometric locally modular non-trivial C-minimal structure, there is a
definable infinite C-minimal group.
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r é s u m é

Cette Note traite des groupes type-définissables dans les structures C-minimales. On
démontre d’abord pour certains de ces groupes, qu’ils contiennent un cône qui est un
sous-groupe. Ce résultat sera appliqué pour montrer que dans toute structure géométrique
C-minimale non-triviale et localement modulaire, il y a un goupe C-minimal définissable
infini.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We prove first under certain conditions, that a type-definable group in a C-minimal structure M contains a cone which
is a definable subgroup of M. Similar results are already known in other contexts. In [2], Hrushovski shows that in a stable
structure, a type-definable group is the intersections of definable groups. And in the case where the structure is totally
transcendental, then the group is in fact definable. More recently, Milliet shows in [6] similar results for small theories.
A theory is small, if for each natural number n, it has countably many n-types over the empty set, and a structure is small
if its theory is. It is proved in [6] that a ∅-type-definable group of finite arity in a small structure is the intersection of
definable groups, and that for any type-definable group G in a simple small structure, and any finite subset A of G , there is
a definable group containing A.

In Section 2 we prove the following:

Theorem 1. Let M = (M, C, . . .) be a C-minimal structure and G = (G, .,1, C) an infinite type-definable C-group in M such that G
is an intersection of cones of M. Then G contains a cone which is a subgroup. In particular, G contains a definable infinite C-group.

Theorem 1 as well as its proof, are very similar to results which can be found in [5]. In order to be self-contained, we
will reproduce here most of the necessary arguments for the proof.

The next result follows from Theorem 1. It can be already found in [5], though it is not stated there as a separate result.
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Theorem 2. Let G = (G, ., C,1, ..) be a C-minimal group. Then G contains a cone which is a subgroup.

Theorem 1 will be used to strengthen a result from [3]. We show the following

Theorem 3. Let M = (M, C, . . .) be a geometric locally modular non-trivial C-minimal structure. Then there is a definable infinite
C-minimal group in M.

Notations: We use M, N , . . . to denote structures and M, N, . . . for their underlying sets.
We start with a few definitions and preliminary results. C-structures have been introduced and studied in [4,5]. We

remind in what follows their definition and principal properties. A C-structure is a structure M = (M, C, . . .), where C is a
ternary predicate satisfying the following axioms:

• ∀x, y, z, C(x, y, z) −→ C(x, z, y).
• ∀x, y, z, C(x, y, z) −→ ¬C(y, x, z).
• ∀x, y, z, w, C(x, y, z) −→ C(x, w, z)

∨
C(w, y, z).

• ∀x, y, x �= y ∃z �= y, C(x, y, z).

Let M be a C-structure. We call cone any subset of M of the form {x; M |� C(a, x,b)}, where a and b are two distinct
elements of M. It follows from the first three axioms of C-relations that the cones of M form a basis of a completely
disconnected topology on M . The last axiom guarantees that all cones are infinite.

Let (T ,�) be a partially ordered set. We say that (T ,�) is a tree if the set of elements of T below any fixed element is
totally ordered by �, and if any two elements of T have a greatest lower bound. A branch of T is a maximal totally ordered
subset of T . It is easy to check that if a and b are two distinct branches of T , then sup(a ∩ b) exists. On the set of branches
of T , we define a ternary relation C in the following way: we say that C(a,b, c) is true if and only if b = c or a,b, and c are
all distinct and sup(a ∩ b) < sup(b ∩ c). It is easy to check that this relation on the set of branches satisfies the first three
axioms of a C-relation.

A theorem from [1] shows that C-structures can be looked at as a set of branches of a tree. We will then associate
to any C-structure M a tree T . We will call it the underlying tree of M, and the elements of T will be called nodes. To
any x, y ∈ M , x �= y, we associate the node t := sup(x ∩ y), where x and y are seen as subsets of T . This operation is well
defined, and we say then that x and y branch at t . If a and b are two elements of M branching at a node t , and if D is the
cone D := {x ∈ M; C(a, x,b)}, we say then that D is the cone at the node t containing b. If t and t′ are two nodes, we denote
by t || t′ the property that t and t′ are not comparable in T with respect to the relation �. If A and B are two sets of nodes,
we denote by A || B the property that, for any t ∈ A and t′ ∈ B, t || t′ .

Definition 4. Let M = (M, C, . . .) be a C-structure. We say that M is C-minimal if and only if for any structure M′ =
(M ′, C, . . .) elementarily equivalent to M, any definable subset of M ′ can be defined without quantifiers using only the
relations C and =.

2. A cone of a C -minimal group is a subgroup

Definition 5. We say that G = (G, .,1, C) is a C-group if and only if G is a C-structure, (G, .,1) is a group and for all
x, y, z,a,b ∈ G, G |� C(x, y, z) −→ C(a.x.b,a.y.b,a.z.b).

Let G = (G, .,1, C) be a C-group and T its underlying tree. Let t ∈ T , and x, y, x′, y′, z ∈ G be such that, x and y, as well
as x′ and y′ branch at t (recall that the elements of a C-structure are looked at as branches of the underlying tree). It is
easy to check that z.x and z.y, as well as z.x′ and z.y′ , all branch again at the same node, which we denote by tz . We can
then define a left action of G on T , (z, t) �→ tz , and check that this action preserves <. We will speak then of orbits of G
on T . Similarly one can check that if D is a cone of G at a node t , then z.D := {z.x; x ∈ D} is a cone at the node tz .

Proposition 6. Let G = (G, .,1, C) be a C-group and T its underlying tree. Suppose that some orbit Ω of G on T is an antichain. Then
there is a cone in G which is a subgroup.

Proof. Let s ∈ Ω and g ∈ G be such that s ∈ g . Since g−1.g = 1, then t := sg−1
is an element of Ω ∩ 1 (here we see 1 as a

branch of T ). Let X be the cone at the node t containing 1. We want to show that X is a subgroup of G . Take h ∈ X . Then
h.X is a cone at the node th . But th ∈ Ω , and if th �= t , th is incomparable with t (Ω is an antichain). In this case, since a
chain contains no two incomparable elements, h.X ∩ X = ∅. But this cannot happen since 1 and h are two elements of X ,
and thus h ∈ h.X ∩ X . We have shown that h.X is the cone at the node t containing h, and then h.X = X . And since 1 ∈ X ,
h−1 ∈ X . Since this is true for any h ∈ X , X is a subgroup of G . �
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We now will show in what follows that the same result holds for the C-groups of the statement of Theorem 1 in the
case where there is an orbit which is not an antichain.

Lemma 7. Let M = (M, C, . . .) and G = (G, .,1, C) be as in the statement of Theorem 1. There is a definable subset V of M and an
M-definable function F : V × V �−→ M such that G ⊂ V , F |G × G = . and F is a C-isomorphism in each variable.

Proof. By compactness we know that the group operation of G is definable in M. Denote then by F an M-definable ternary
relation which restriction to G is “.”, the group operation of G . For an element x of M , denote by Cx := {y ∈ M;¬C(y, x,1)}.
Let V be the set of elements x of M such that, F defines on Cx × Cx a binary function which is a C-isomorphism in each
variable. So V is definable, and using the fact that G is an intersection of cones of M , we see easily that V and F do the
job. �

Notations: Let from now on M = (M, C, . . .) and G = (G, .,1, C) be as in the statement of Theorem 1, and let V and F
be as in the statement of Lemma 7. (T ,<) will be the underlying tree of G , and (T ′,<) will be the underlying tree of V
(we have that T ⊂ T ′).

Now doing as above, but using F instead of ., we can define the left action of V on T ′ . We will speak then of orbits of V
on T ′ via F .

Lemma 8. Let t ∈ T and x ∈ V \ G. Then tx /∈ T .

Proof. Since G is an intersection of cones of M , it is enough to show that for all y ∈ G , F (x, y) /∈ G . Suppose not. If
F (x, y) = z ∈ G , by the fact that F is one-to-one in each variable and the fact that the restriction of F to G × G is the
operation “.” of G , we get that x = y−1.z ∈ G . Contradiction. �
Lemma 9. Let Ω be an orbit of G on T and z ∈ G. Then in T , Ω ∩ z is a finite union of intervals and points.

Proof. Let t ∈ Ω , and Ω ′ be the orbit of V on T ′ via F containing t . By C-minimality Ω ′ ∩ z is a finite union of intervals and
points. By Lemma 8, Ω = Ω ′ ∩ T , so Ω ∩ z = Ω ′ ∩ z ∩ T . And then in T , Ω ∩ z is a finite union of intervals and points. �

The two following results can be found in [5]. But we will restate them here in a slightly more general context.

Proposition 10. Let Ω be an orbit of G on T . Then there are no elements r, s, t ∈ Ω such that r < s, r < t and s || t.

Proof. This is exactly Lemma 4.6 of [5], except for the fact that in our case G is not necessarily C-minimal: G satisfies only
the hypothesis of Theorem 1, namely that it is a type-definable C-group in a C-minimal structure M and its universe G
is an intersection of cones of M. The same proof of Lemma 4.6 of [5] works as well in our case, except for replacing the
centralizer of an element h of G by the set C ′

G(h) := {x ∈ V , F (x,h) = F (h, x)}. Lemma 7 is used only at this step. �
Let Ω be an orbit of G on T . For all t ∈ Ω , let Lt := {t′ ∈ Ω; t � t′ ∨ t � t′}. Using Proposition 10, it is easy to check that

the relation ∼ defined on Ω by t ∼ t′ ←→ t′ ∈ Lt is an equivalence relation. For all t, t′ ∈ Ω , we denote by t̄ the class of t
modulo ∼. Note that t̄ = t̄′ if and only if Lt = Lt′ . Set Lt̄ := Lt . It is obvious that {Lt̄; t̄ ∈ Ω/ ∼} is a partition of Ω and that if
ε �= ε′ ∈ Ω/ ∼, Lε || Lε′ (for the notations see the introduction). Now if Ω is not an antichain, at least one of the Lε is not
a singleton. And since G acts transitively on the set {Lt̄; t̄ ∈ Ω/ ∼}, none of the Lε is a singleton.

Proposition 11. Let Ω be an orbit of G on T which is not an antichain. As above, we write Ω := ⋃.
ε∈Ω/∼ Lε . Then for all ε , there is

no g ∈ G such that Lε ⊂ g.

Proof. Suppose for a contradiction that for some ε, g , Lε ⊂ g . Let s < t ∈ Lε , and h ∈ G be such that h branches with g

in s. The image Lg−1.h
ε of Lε under the left action of g−1.h is a subset of h. But from Proposition 10 and the fact that

Ω g−1.h = Ω , Lg−1.h
ε contains no elements of h above s, we get that Lg−1.h

ε ⊂ g ∩ h. On the other hand, we can find t1 ∈ Ω

such that t g−1.h
1 = t . But then t1 /∈ Lε and t1 is not comparable with t . But t g−1.h

1 ∈ Lε is comparable with t g−1.h ∈ h ∩ g .
Contradiction. �
Proposition 12. Suppose that some orbit Ω of G on T is not an antichain. Then there is a cone of G which is a C-subgroup.

Proof. We use the notations of Proposition 11. Let Lε be such that 1 ∩ Lε �= ∅. Let x be an element of G containing a node
of Lε \ 1 (such an element exists by Proposition 11). Let t be the node of T at which x branches with 1. We want to show
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that the cone containing 1 at the node t is a subgroup of G . Denote this cone by D , and let h ∈ D . Since 1 ∈ D , h.D is a
cone containing h at the node th . Note first that t, th ∈ h, then either t � th or th � t . Note also that th ∈ Lε . We want to
show that h.D = D . Since h ∈ D ∩ h.D , it is enough to show that th = t . Suppose not. If th > t , then by the definitions of t
and D and the fact that th ∈ Lε , th /∈ h. But this is impossible. And if th < t , then th−1

> t , and for the same reason as above,
1 /∈ h−1.D , which is impossible. So for all h ∈ D , h.D = D , and since 1 ∈ D , D is a C-subgroup of G . �

Theorem 1 follows directly from Propositions 6 and 12.

Proof of Theorem 3. Let M = (M, C, . . .) be a non-trivial locally modular geometric C-minimal structure, and let M′ be an
ω1-saturated structure elementarily equivalent to M. We show in [3] that in M′ there is an infinite type-definable C-group
G′ = (G ′, .,1, C), and moreover, G ′ is an intersection of cones of M . Thus G′ satisfies the hypothesis of Theorem 1, and there
is a cone D of G ′ which is an infinite C-group definable in M′ . Since M ≡ M′ , there is an infinite C-group G definable
in M. And G is C-minimal because M is C-minimal. �
References

[1] Adeleke, Neumann, Relations Related to Betweenness: Their Structure and Automorphisms, Mem. Amer. Math. Soc., 1998.
[2] E. Hrushovski, Contributions to stable model theory, PhD, Berkeley, 1986.
[3] F. Maalouf, Construction d’un groupe dans les structures c-minimales, The Journal of Symbolic Logic 73 (2008) 957–968.
[4] D. Macpherson, D. Haskell, Cell decompositions of c-minimal structures, Annals of Pure and Applied Logic 66 (1994) 113–162.
[5] D. Macpherson, C. Steinhorn, On variants of o-minimality, Annals of Pure and Applied Logic 79 (1996) 165–209.
[6] C. Milliet, Propriétés algébriques des structures menues ou minces, rang de cantor bendixson, espaces topologiques généralisés, PhD, Université Claude

Bernard-Lyon 1, 2009.


	Type-definable groups in C-minimal structures
	Introduction
	A cone of a C-minimal group is a subgroup
	References


