EI SEVIER

Contents lists available at ScienceDirect

# C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com



## Harmonic Analysis

# On Ingham-type interpolation in $\mathbb{R}^n$

# Sur l'interpolation du type d'Ingham dans $\mathbb{R}^n$

Alexander Olevskii a, 1. Alexander Ulanovskii b

#### ARTICLE INFO

# Article history: Received 1 June 2010 Accepted 2 June 2010 Available online 23 June 2010

Presented by Jean-Pierre Kahane

## ABSTRACT

Let  $\mathcal S$  and  $\mathcal K$  be 0-symmetric convex bodies in  $\mathbb R^n$ . We are interested in determining conditions under which every set  $\Lambda$  satisfying  $(\Lambda-\Lambda)\cap\mathcal K=\{0\}$  is a set of interpolation for the Paley–Wiener space of functions with spectrum in  $\mathcal S$ . Some sufficient and necessary conditions are given which, in particular, imply sharp asymptotic estimates for the  $l_p$ -balls. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## RÉSUMÉ

Soient  $\mathcal S$  et  $\mathcal K$  deux ensembles convexes 0-symétriques (symétriques par rapport à 0). A quelle condition tout ensemble  $\Lambda$  vérifiant  $(\Lambda-\Lambda)\cap\mathcal K=\{0\}$  est-il un ensemble d'interpolation pour les fonctions localement  $L^2$  à spectre dans  $\mathcal S$ ? On donne des conditions nécessaires et des conditions suffisantes pour qu'il en soit ainsi, et on en dérive des estimations précises pour les boules  $l_p$  quand  $n\to\infty$ .

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## Version française abrégée

On dit que  $\mathcal S$  et  $\mathcal K$ , convexes et 0-symétriques dans  $\mathbb R^n$ , forment une paire admissible si, pour tout  $\Lambda \subset \mathbb R^n$  verifiant  $(\Lambda - \Lambda) \cap \mathcal K = \{0\}$ , l'application  $f \to \hat f|_{\Lambda}$  de  $L^2(\mathcal S)$  dans  $l^2|_{\Lambda}$  est surjective (on dit alors que  $\Lambda$  est un ensemble d'interpolation pour  $PW_{\mathcal S}$ ). Voici les principaux résultats :

**Théorème 1.** Soient A et B deux ensembles convexes 0-symétriques dans  $\mathbb{R}^n$ . S'il existe  $f \in L^2(\mathbb{R}^n)$  telle que

$$\int_{\mathcal{A}} |f|^2 > \frac{99}{100} \int_{\mathbb{R}^n} |f|^2 \quad et \quad \int_{\mathcal{B}} |\hat{f}|^2 > \frac{99}{100} \int_{\mathbb{R}^n} |\hat{f}|^2,$$

alors (A, 12B) est admissible, et de même (B, 12A).

**Théorème 2.** Si S, K est une paire admissible, alors

$$\operatorname{vol}(\mathcal{S}) \cdot \operatorname{vol}(\mathcal{K}) \geqslant (2\pi)^n$$
.

<sup>&</sup>lt;sup>a</sup> School of Mathematics, Tel Aviv University, Ramat Aviv, 69978 Israel

<sup>&</sup>lt;sup>b</sup> Stavanger University, 4036 Stavanger, Norway

E-mail addresses: olevskii@post.tau.ac.il (A. Olevskii), Alexander.Ulanovskii@uis.no (A. Ulanovskii).

<sup>&</sup>lt;sup>1</sup> The first author is partially supported by the Israel Science Foundation.

**Théorème 3.** Soit  $B_p$  resp.  $B_q$  la boule unité de  $\mathbb{R}^n$  en norme  $l_p$  resp.  $l_q$ . Il existe C > 0 tel que  $(\mathcal{B}_p, Cn\mathcal{B}_q)$  soit admissible pour tout n > 1,  $1 \le p \le \infty$  et q = p/(p-1).

Cela est faux pour C < 1/e.

## 1. Introduction

Let S be a bounded set in  $\mathbb{R}^n$ ,  $n \geqslant 1$ . By  $PW_S$  we denote the space of all functions  $f \in L^2(\mathbb{R}^n)$  such that  $\hat{f}$  vanishes a.e. outside S, where

$$\hat{f}(t) := \int_{\mathbb{R}^n} e^{it \cdot x} f(x) \, \mathrm{d}x$$

is the Fourier transform of f. Let  $\Lambda$  be a separated set in  $\mathbb{R}^n$ . Then the restriction operator

$$R: f \to f|_{\Lambda}$$

acts boundedly from  $PW_S$  into  $l^2(\Lambda)$ .  $\Lambda$  is called a set of interpolation for  $PW_S$  if R is surjective. The following result is classical:

**Theorem A.** (See Ingham [2].) Let  $\Lambda \subset \mathbb{R}$  satisfy the condition:

$$\inf_{\lambda,\lambda'\in\Lambda,\,\lambda\neq\lambda'}|\lambda-\lambda'|>\pi.$$

Then  $\Lambda$  is a set of interpolation for  $PW_{[-1,1]}$ .

Ingham-type results for  $\mathbb{R}^n$ , n > 1, were first obtained by J.P. Kahane in [3,4]. In [5] (see also references therein) the authors extended Ingham's approach to  $PW_{\mathcal{B}_2}$ , where  $\mathcal{B}_2$  is the unit ball in  $\mathbb{R}^n$ . Some estimates were obtained involving the first eigenvalue of Laplacian in certain domains. These estimates show, in particular, that every set  $\Lambda \subset \mathbb{R}^n$  satisfying

$$\inf_{\lambda,\lambda'\in\Lambda,\,\lambda\neq\lambda'}\|\lambda-\lambda'\|_2 > Cn,\tag{1}$$

for some constant C > 0, is a set of interpolation for  $\mathcal{B}_2$ .

## 2. Results

**Definition 1.** Let  $S, K, 0 \in K$ , be bounded measurable sets in  $\mathbb{R}^n$ . We say that the pair (S, K) is admissible if every set  $\Lambda$  with the property  $(\Lambda - \Lambda) \cap K = \{0\}$  is a set of interpolation for  $PW_S$ .

**Definition 2.** Let  $a \in (0,1)$ . We say that a function  $f \in L^2(\mathbb{R}^n)$  is a-concentrated on a set  $\mathcal{A}$  if

$$\int_{A} |f(t)|^{2} dt > a \int_{\mathbb{R}^{n}} |f(t)|^{2} dt.$$

We show that the Ingham-type interpolation property is intimately connected with existence of functions f concentrated on  $\mathcal{K}$  such that  $\hat{f}$  is concentrated on  $\mathcal{S}$ . Below by a we denote a small absolute positive constant (one may take  $a=10^{-2}$ ).

**Theorem 1.** Let  $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^n$  be 0-symmetric convex bodies. Suppose there exists  $f \in L^2(\mathbb{R}^n)$  such that f is (1-a)-concentrated on  $\mathcal{A}$  and  $\hat{f}$  is (1-a)-concentrated on  $\mathcal{B}$ . Then the pairs  $(\mathcal{A}, 12\mathcal{B})$  and  $(\mathcal{B}, 12\mathcal{A})$  are admissible.

The next theorem gives a necessary condition for admissibility:

**Theorem 2.** Let  $S, K \subset \mathbb{R}^n$  be convex 0-symmetric bodies. If the pair (S, K) is admissible then

$$\operatorname{vol}(\mathcal{S}) \cdot \operatorname{vol}(\mathcal{K}) \geqslant (2\pi)^n.$$
 (2)

As an application of Theorem 1, we have the following result in which  $\mathcal{B}_p \subset \mathbb{R}^n$  denotes the unit ball in the  $l_p$ -norm:

**Theorem 3.** There exists C > 0 such that the pair  $(\mathcal{B}_p, Cn\mathcal{B}_q)$  is admissible for every n and  $1 \le p \le \infty$ , where q = p/(p-1).

This result is sharp, see Remark 1 below. In particular, it follows that the linear growth in (1) cannot be improved.

## 3. Proof of Theorem 1

Below we sketch the proof of Theorem 1.

It is well known that  $\Lambda$  is an interpolation set for  $PW_S$  if and only if there exists  $C(\Lambda, S)$  such that the inequality

$$\int_{C} \left| \sum_{i=1}^{N} c_{j} e^{i\lambda_{j} \cdot x} \right|^{2} dx \geqslant C(\Lambda, \mathcal{S}) \sum_{i=1}^{N} |c_{j}|^{2}, \tag{3}$$

holds for every finite sequence  $c_1, \ldots, c_N$  and every  $\lambda_1, \ldots, \lambda_N \in \Lambda$ . Suppose f satisfies the assumptions of Theorem 1. It clearly suffices to show that  $(\mathcal{A}, 12\mathcal{B})$  is admissible. Let g be the inverse Fourier transform of  $\hat{f}(x)\mathbf{1}_{\mathcal{B}}(x)$ . Then  $g \in PW_{\mathcal{B}}$  and g is  $(1-\alpha)$ -concentrated on  $\mathcal{A}$ , for some small  $\alpha = \alpha(a) > 0$ . We may assume that  $\|g\|_2 = 1$ , and so  $\|g \cdot \mathbf{1}_{\mathcal{A}}\|_2^2 \ge 1 - \alpha$ . Set

$$\eta(t) := 1, \qquad t \in 2\mathcal{A}, \qquad \eta(t) := -1, \qquad t \in \mathbb{R}^n \setminus 2\mathcal{A},$$

and denote by h(t) the convolution of  $\eta(t)$  and  $|g(t)|^2$ . It is straightforward to check that  $|h(t)| \le 1$  for all  $t \in \mathbb{R}^n$  and that

$$h(t) \geqslant 1 - 2\alpha > 0$$
,  $t \in \mathcal{A}$ ,  $h(t) \leqslant -1 + 2\alpha < 0$ ,  $t \in \mathbb{R}^n \setminus 3\mathcal{A}$ .

Next, we set  $\Psi(t) := h(t)|g(t)|^2$ . Since  $|g(t)|^2 \in PW_{2B}$ , we have  $\Psi \in PW_{4B}$ . Also, we have  $\Psi(t) < 0$  for  $t \in \mathbb{R}^n \setminus 3\mathcal{A}$ , and

$$\hat{\Psi}(0) = \int_{\mathbb{R}^n} \Psi(t) dt \geqslant \int_{\mathcal{A}} (1 - 2\alpha) |g(t)|^2 dt - \int_{\mathbb{R}^n \setminus \mathcal{A}} |f(t)|^2 dt \geqslant (1 - 2\alpha)(1 - \alpha) - \alpha > 0.$$

Suppose that  $(\Lambda - \Lambda) \cap 4\mathcal{B} = \{0\}$ . Following Ingham [2], we have

$$\sup_{x \in 3\mathcal{A}} \Psi(x) \int_{3\mathcal{A}} \left| \sum_{j} c_{j} e^{i\lambda_{j} \cdot x} \right|^{2} dx \geqslant \int_{\mathbb{R}^{n}} \Psi(x) \left| \sum_{j} c_{j} e^{i\lambda_{j} \cdot x} \right|^{2} dx = \sum_{j,l} c_{j} \bar{c}_{l} \hat{\Psi}(\lambda_{j} - \lambda_{l}) = \hat{\Psi}(0) \sum_{j} |c_{j}|^{2},$$

which proves (3) for S = 3A. Hence, every  $\Lambda$  with  $(\Lambda - \Lambda) \cap 4B = \{0\}$  is a set of interpolation for 3A. This shows that (3A, 4B) is admissible, which is equivalent to the admissibility of (A, 12B).

## 4. Proof of Theorem 2

By Minkowski–Hlawka theorem (see [1, ch. 6]), there is a lattice  $\Lambda := T\mathbb{Z}^n$ , where  $T : \mathbb{R}^n \to \mathbb{R}^n$  is an invertible linear operator, such that:

(i) 
$$\Lambda \cap \mathcal{K} = \{0\};$$
 (ii)  $d(\Lambda) < \text{vol}(K),$ 

where  $d(\Lambda) = \operatorname{vol}(T[0,1]^n)$  is the volume of the fundamental parallelepiped of  $\Lambda$ . By assumption,  $\Lambda$  is an interpolation set for  $PW_S$ . Hence  $\mathbb{Z}^n$  is a set of interpolation for  $PW_{T^{-1}S}$ . Since the exponential system  $\{e^{ik \cdot t}\}_{k \in \mathbb{Z}^n}$  forms an orthogonal basis in  $L^2[-\pi,\pi]^n$ , we have  $\operatorname{vol}(T^{-1}S) \geqslant (2\pi)^n$ . Now this and estimate (ii) above prove (2).

## 5. Admissible $l_p$ -balls

Lemma 1. Set

$$S(x) := \prod_{j=1}^{n} \left( \frac{\sin x_j}{x_j} \right)^2, \quad x = (x_1, \dots, x_n), \ n > 1.$$

Then  $S \in PW_{2B_{\infty}}$ , and there exists C > 0 such that S(x) is  $(1 - \epsilon)$ -concentrated on  $(C\sqrt{n/\epsilon})\mathcal{B}_2$  for every  $0 < \epsilon < 1$ .

Proof. Set

$$\beta := \int_{\mathbb{R}} \left( \frac{\sin t}{t} \right)^4 dt, \qquad \gamma := \int_{\mathbb{R}} \frac{\sin^4 t}{t^2} dt.$$

Then  $||S||_2^2 = \beta^n$  and

$$\int_{\|x\|_2 > \sqrt{n\gamma/\epsilon\beta}} S^2(x) \, \mathrm{d}x < \frac{\epsilon \beta}{n\gamma} \int_{\mathbb{R}^n} \|x\|_2^2 S^2(x) \, \mathrm{d}x = \epsilon \beta^n = \epsilon \|S\|_2^2,$$

which shows that S(x) is  $(1 - \epsilon)$ -concentrated on  $(\sqrt{n\gamma/\epsilon\beta})B_2$ .  $\square$ 

Lemma 1 and Theorem 1 show that the pairs  $(\mathcal{B}_2, C\sqrt{n}\mathcal{B}_\infty)$  and  $(\mathcal{B}_\infty, C\sqrt{n}\mathcal{B}_2)$  are admissible, for some constant C>0. Clearly, if a pair  $(\mathcal{S}, \mathcal{K})$  is admissible and  $\mathcal{S} \subset \mathcal{S}^*, \mathcal{K} \subset \mathcal{K}^*$ , then  $(\mathcal{S}^*, \mathcal{K}^*)$  is admissible, too. Since  $1 \leq p < p^* \leq \infty$  implies  $n^{1/p}\mathcal{B}_p \subset n^{1/p^*}\mathcal{B}_{p^*}$ , we obtain Theorem 3 in a slightly stronger form:

**Theorem 3\*.** There is a constant C > 0 such that for every n > 1 the pair  $(n^{1/p}\mathcal{B}_p, Cn^{1/p^*}\mathcal{B}_{p^*})$  is admissible provided  $p, p^* \geqslant 1$  and at least one of the numbers  $p, p^*$  does not exceed 2.

## 6. Remarks

**1**. When q = p/(p-1), the Blashke–Santaló inequality gives

$$\operatorname{vol}(\mathcal{B}_p) \cdot \operatorname{vol}(\operatorname{Cn}\mathcal{B}_q) \leqslant (\operatorname{Cn})^n (\operatorname{vol}(\mathcal{B}_2))^2 = \operatorname{C}^n (2\pi e + o(1))^n.$$

By Theorem 2, we see that Theorem 3 ceases to be true for  $C < e^{-1}$ .

- **2.** One can show that Theorem 3\* remains true for all  $p, p^* \ge 1$  provided one replaces C by  $C \cdot \min\{p, p^*\}$ .
- **3.** Theorems 1 and 2 admit extension to the case when  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{S}$  and  $\mathcal{K}$  are arbitrary (not necessarily convex) bounded sets in  $\mathbb{R}^n$ .

The conclusion of Theorem 2 remains true, the only change in the proof is that one uses a theorem of Hlawka (see [1], Corollary on p. 182) instead of Minkowski-Hlawka theorem.

The proof of Theorem 1 (with obvious minor changes) yields the following variant of Theorem 1: *Under the assumptions* on f, the pairs (A + A - A, B + B - B - B) and (B + B - B, A + A - A - A) are admissible.

**4.** We conjecture that a more general version of Theorem 3 holds: There exists C > 0 such that every pair  $(K, CnK^0)$  is admissible, where  $K \subset \mathbb{R}^n$  is a convex 0-symmetric body and  $K^0$  is its polar body.

## References

- [1] J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, 1971.
- [2] A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z. 41 (1) (1936) 367-379.
- [3] J.-P. Kahane, Fonctions pseudo-périodiques dans  $\mathbb{R}^p$  (French), in: Proc. Intl. Sympos. Linear Spaces, Jerusalem, 1960, Jerusalem Academic Press/Pergamon, Jerusalem/Oxford, 1961, pp. 274–281.
- [4] J.-P. Kahane, Pseudopériodicité et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (3) 79 (1962) 93-150.
- [5] V. Komornik, P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics, Springer-Verlag, 2005.