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Let Fn be the nth Fibonacci number. For 1 � k � m, let[
m
k

]
F

= Fm Fm−1 · · · Fm−k+1

F1 · · · Fk

be the corresponding Fibonomial coefficient. In 2003, the problem of determining the
perfect powers in the Fibonacci sequence was completely solved. In fact, the only solutions
of Fm = yt , with m > 2, are (m, y, t) = (6,2,3), (12,12,2). In this paper, we prove that the
only solutions of the Diophantine equation[

m
k

]
F

= yt ,

with m > k + 1 and t > 1, are those related to k = 1, that is (m,k, y, t) = (6,1,2,3) and
(12,1,12,2).

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Fn le nème nombre de Fibonacci. Pour 1 � k � m, soit[
m
k

]
F

= Fm Fm−1 · · · Fm−k+1

F1 · · · Fk

le coéfficient Fibonomial correspondant. En 2003, les puissances parfaites dans la suite de
Fibonacci ont été complètement déterminées. Ainsi, les seules solutions de Fm = yt , avec
m > 1, sont (m, y, t) = (6,2,3), (12,12,2). Dans cet article, nous montrons que les seules
solutions de l’équation diophantienne[

m
k

]
F

= yt ,

avec m > k + 1 et t > 1, sont celles pour lesquelles k = 1, qui sont (m,k, y, t) = (6,1,2,3)

et (12,1,12,2).
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1. Introduction

Let (Cn)n�0 be a Lucas sequence given recurrently by Cn+2 = Cn+1 + Cn , for n � 0, where the values C0 and C1 are
previously fixed. For instance, if C0 = 0 and C1 = 1, then the Cn = Fn are the Fibonacci numbers. Also, if C0 = 2 and C1 = 1,
the sequence Cn = Ln gives the Lucas numbers.

The problem of finding the perfect powers in the Fibonacci sequence was a classical problem that attracted much atten-
tion during the past 40 years. In 2003, Bugeaud et al. [3, Theorem 1] confirmed the expectation: the only perfect powers
in that sequence are 0, 1, 8 and 144. Such result is usually referred to the Fibonacci Perfect Power Theorem (FPPT) and its
proof combines for the first time two powerful techniques in number theory, namely, the tools from Wiles’s proof of the
Last Fermat Theorem and Baker’s theory on linear forms in logarithms. Furthermore, in the same paper, it was proved that
the only Lucas numbers which are perfect powers are 1 and 4, see [3, Theorem 2]. In 2005, Luca and Shorey [4, Theorem 2]
proved that the product of two or more consecutive Fibonacci numbers is never a perfect power except for the trivial case
F1 F2 = 1.

The Fibonomial coefficient
[m

k

]
F is defined, for 1 � k � m, by replacing each integer appearing in the numerator and

denominator of
(m

k

) = m(m−1)···(m−k+1)
k(k−1)···1 with its respective Fibonacci number. That is

[
m

k

]
F

= Fm Fm−1 · · · Fm−k+1

F1 · · · Fk
.

The Fibonacci Perfect Power Theorem asserts that the solutions of the Diophantine equation
[ m

1

]
F = Fm = yt , with m > 2,

are (m, y, t) = (6,2,3) and (12,12,2). A natural question arises: what are the possible perfect powers in the sequence
[m

2

]
F ,

with m � 4? In the sequence
[ m

3

]
F , with m � 5? And so on?

It is not a hard matter to prove that none of the Fibonomial coefficients, with m − 1 > k > 1, is a Fibonacci number. Thus
it would be reasonable to think that there are finitely many perfect powers in any sequence

[ m
k

]
F , for a fixed k > 1 and

m � k + 2.
In this paper, we use the Luca–Shorey method [4] to prove that the only perfect powers which appear in the Fibonomial

sequence are those related to k = 1. Our result is the following.

Theorem 1. The only solutions of the Diophantine equation[
m

k

]
F

= yt (1)

in positive integers m, k, y, t, with m > k + 1 and t > 1 are (m,k, y, t) = (6,1,2,3) and (12,1,12,2).

In the next section, we will recall some properties related to the Fibonacci numbers that will be very useful for the proof
of Theorem 1.

2. The proof

Before proceeding further, some considerations will be needed for the convenience of the reader. In fact, a primitive
divisor p of Fn is a prime factor of Fn , which does not divide

∏n−1
j=1 F j . It is known that a primitive divisor p of Fn

exists whenever n � 13. The above statement is usually referred to the Primitive Divisor Theorem (see [1] and [2] for the
most general version). As an application, it is immediate that if

[ m
k

]
F = Fn , then max{m,n} < 13. Hence, assuming that

m − 1 > k > 1 a quick computation reveals that there are no solutions for the previous Diophantine equation in that range.
Now, we recall some interesting and helpful facts which will be essential ingredients to prove Theorem 1.

(i) gcd(Fm, Fn) = Fgcd(m,n) and F2n = Fn Ln .
(ii) Let p be a prime number and let ρp be the smallest positive index n such that p divides Fn (called rank of apparition

of p). Then Fn ≡ 0 (mod p) if and only if n ≡ 0 (mod ρp) and p ≡ (5/p) (mod ρp) (see [7]). Here (5/p) is the usual
Legendre symbol.

(iii) If d = gcd(m,n), then

gcd(Fm, Ln) =
{

Ld, if m/d is even and n/d is odd;
1 or 2, otherwise.

(iv) (Sylvester Theorem [6]) If n and k are positive integers, with n > k, then the product of k consecutive integers∏
n,k

= n(n + 1) · · · (n + k − 1)

is necessarily divisible by a prime p > k (i.e., P (
∏

n,k) > k, where P (m) denotes the greatest prime divisor of a positive
integer m).
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Let [a,b] denote the set {a,a + 1, . . . ,b}, where a,b are integers such that a < b. Now, we are ready to deal with the
proof of Theorem 1.

By FPPT, the only perfect powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F6 = 8, and F12 = 144 giving the
solutions for our Diophantine equation in the case k = 1. So, we suppose that k > 1. We can rewrite Eq. (1) into the form

Fm · · · Fm−k+1 = yt F1 · · · Fk. (2)

Moreover, we can assume that t is a prime number. Using computational tools, one can see that for all � ∈ [1,190], there
exists a prime number p > 17, such that p2 does not divide F� . Suppose that m ∈ [13,190], then by the Primitive Divisor
Theorem, Fm has a primitive divisor p. By Eq. (2), p must divide y, since t � 2, then p2 divides Fm but this gives a
contradiction. So, we consider m > 190. We will split our proof in two cases.

Case 1. m � 2k − 1.

We claim that there exists i ∈ [0,k − 1], such that m − i is a power of 2. In fact, if m = 2k − 1, then [m − k + 1,m] =
[k,2k − 1], and when m � 2k − 2, we have

I =
(

m

2
,m

]
⊆ [m − k + 1,m]

and thus the interval I contains a unique power of 2, say m − i = 2μ (in fact, each interval (x,2x], with x > 0, contains a
unique power of 2). Thus, if i �= j ∈ [0,k − 1], then ord2(m − j) < μ. Note that 2k − 1 � m � 191 and then k � 96. Since
2μ > m/2 � k/2 � 48, we get μ � 6. Using item (i), we rewrite Eq. (2) into the form

F2μ−1 L2μ−1

∏
j∈[0,k−1]

j �=i

Fm− j = yt F1 · · · Fk. (3)

As gcd(L2μ−1 , F j) = 1 for j ∈ [1,k], gcd(L2μ−1 , Fm− j) = 1, for i �= j ∈ [0,k −1] we get gcd(L2μ−1 , F2μ−1 ) = 1 or 2. However Fm

is even iff 3|m and then gcd(L2μ−1 , F2μ−1 ) = 1. Thus, Eq. (3) leads to L2μ−1 = yt
1, for some integer y1 > 1. Since 2μ−1 � 32,

then L2μ−1 cannot be a perfect power, see [3, Theorem 2], completing the proof in this case.

Case 2. m > 2k − 1 and so m − k + 1 > k.

Since m,m − 1, . . . ,m − k + 1 are k consecutive numbers greater than k, we get by Sylvester Theorem, that Q =
P (m(m − 1) · · · (m − k + 1)) > k. It follows that Q � 5. Indeed, suppose that Q = 2,3. If Q = 2, then k = 1, which is
impossible as we suppose that k > 1. If Q = 3, then k = 1,2. We need only to consider the case k = 2. In this case, we have
3 = P (m(m − 1)) and m(m − 1) = 2a3b . Since gcd(m,m − 1) = 1, then one can see that m = 3b and m − 1 = 2a or m = 2a and
m − 1 = 3b . These systems give the equation 2a − 3b = ±1. We know that the only solution of this equation is (a,b) = (3,2),
see [5, p. 178, (3.1)]. Thus we have m � 32 < 190, which is impossible. Therefore Q � 5.

Since there are exactly k consecutive numbers in the sequence m,m − 1, . . . ,m − k + 1, we must have that Q divides a
unique m − j, for some j ∈ [0,k − 1]. Write m − j = Q 1t , where Q 1 = Q μ and gcd(Q , t) = 1. So, we can rewrite Eq. (2) into
the form

F Q 1

(
Fm− j

F Q 1

) ∏
i∈[0,k−1]

i �= j

Fm−i = yt F1 · · · Fk.

Observe that gcd(F Q 1 , Fm−i) = 1 and gcd(F Q 1 , F j) = 1 because ordQ (m − i) = 1, for i �= j and j < k < Q . Also, we have
gcd(F Q 1 , Fm− j/F Q 1) = gcd(F Q 1 , t) = 1. To prove this last equality, we use (ii) to conclude that if p is a prime factor of F Q 1 ,
then ρp = Q a , with a ∈ [1,μ] and p � 2ρp − 1, because ρp is odd (and then 2 divides p ± 1). Thus

p � 2ρp − 1 = 2Q a − 1 � 2Q − 1 > Q > P (m − j) > P (t).

So gcd(F Q 1 , t) = 1. Therefore, for some y1 (factor of y) we have F Q 1 = yt
1. By FPPT, we infer that Q 1 is either 6 or 12 (keep

in mind that Q 1 > 5). However this is impossible because Q 1 = Q μ and Q is a prime number.
Hence, we must only to consider the range 2 � k � 10 and k + 2 � m � 12. We wrote a simple program in Mathematica

to see that no value helps to get a perfect power. We recall that for being a perfect power, the greatest common divisor
of the exponents needs to be > 2 but this does not happen. Indeed, all number N in this sequence possess a prime factor
p < 17, such that p2 does not divide N . Thus we have our desired result.
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