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We answer a problem posed recently by Knuth: an n-dimensional box, with edges lying on
the positive coordinate axes and generic edge lengths W1 < W2 < · · · < Wn , is dissected
into n! pieces along the planes xi = x j . We describe which pieces have the same volume,
and show that there are Cn distinct volumes, where Cn denotes the nth Catalan number.
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r é s u m é

Nous répondons à un problème posé récemment par Knuth dans le contexte suivant : une
boîte de dimension n, dont les arêtes s’alignent en partant de l’origine sur les axes de
coordonnées positives et sont de longueur générique W1 < W2 < · · · < Wn , est découpée
en n! morceaux par les hyperplans xi = x j . Nous décrivons alors les morceaux qui ont
même volume et nous montrons qu’il y a Cn volumes distincts où Cn désigne le n-ième
nombre de Catalan.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a recent talk [4], D. Knuth posed the following problem. Consider the n-dimensional box B = [0, W1] × · · · × [0, Wn],
where W1 < W2 < · · · < Wn . If π is a permutation in Sn , the symmetric group on n letters, define the region

Cπ = {x ∈ B | xπ(1) � xπ(2) � · · · � xπ(n)}.
In other words, we dissect B by cutting it along the planes xi = x j , for 1 � i < j � n. Each Cπ is a piece of this dissection.
Let us view the volume of Cπ as a polynomial in the W i . How many distinct volumes are there amongst the Cπ , and which
Cπ have the same volume?

See Fig. 1 for the case n = 3, in which C132 and C123 have the same volume and all others have distinct volumes. The
left-hand image shows the original problem; the other two images show B being dissected further along the planes xi = W j ,
so that the volumes may be more easily computed.

Definition 1.1. Let P denote the set of all partitions. Let π be a permutation with matrix [aij] acting on the right. Define
ψ : Sn → P to be the map which sends π to the partition whose Young diagram is{(

i′, j′
)
: aij = 0 for all i � i′ and j � j′

}
.
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Fig. 1. Knuth’s problem in dimension 3.

Fig. 2. Three of the constructions described in this article, applied to the permutation π = 42 531. From left to right: λmax(π) = (4,2,2,2,1), ψ(π) =
(3,1,1,1), and the diagram of π .

In other words, we cross out all matrix entries which lie weakly below and/or to the right of every one in the permuta-
tion matrix for π (see Fig. 2, center image). The entries which are not crossed out form the Young diagram of ψ(π). Note
that our permutation matrices always act on the right.

Theorem 1.2. If π and σ are permutations, then Vol(Cπ ) = Vol(Cσ ) if and only if ψ(π) = ψ(σ ).

We defer the proof of this theorem to the end of the paper. However, there is an immediate corollary, if we appeal to a
few results in the literature:

Corollary 1.3. The number of distinct elements of the set {Vol(Cπ ): π ∈ Sn} is Cn = 1
n+1

(2n
n

)
, the nth Catalan number.

Proof. Observe that ψ(π) is closely related to a well-known construction, namely that of the diagram of the permutation π .
To construct the diagram of π , one crosses out all entries directly below and directly to the right of each of the ones in the
matrix for π . The result need not be a Young diagram (see Fig. 2, right image). As observed by Reifegerste [5], this procedure
yields a Young diagram (and hence coincides with our ψ(π)) precisely when π is 132-avoiding. In other words, our ψ map
yields precisely the rank-zero piece of Fulton’s essential set [3,1]; the entire essential set has rank zero precisely when π
is 132-avoiding. Alternatively, one can see directly that boundary of the Young diagram for ψ(π) is always a Dyck path [2].
Both 132-avoiding permutations and Dyck paths are enumerated by the Catalan numbers. �

We do not know of a good reason why this problem, or our solution, should have anything to do with combinatorial
representation theory; the map ψ as defined above arises naturally in our solution.

We note that Knuth’s original setting of the problem [4] is slightly different. Namely, fix weights W1 < · · · < Wn , and
let X1, . . . , Xn be uniform random variables on [0,1]. We rank the quantities xi = W i Xi from smallest to largest. If π is
a permutation on n letters, define the event Eπ : xπ(1) � xπ(2) � · · · � xπ(n) . Knuth observed that when n � 3, certain of
these events Eπ occur with the same probability regardless of the choice of W i . Theorem 1.2 now classifies the events E(π)

which occur with the same probability.
We would like to thank D. Knuth for helpful correspondence.

2. A refinement of the dissection

We will proceed in the manner suggested in Fig. 1: we subdivide the box B further, along the hyperplanes xi = W j . Once
this is done, all pieces have very simple shapes, and are easily understood.

Definition 2.1. Let W0 = 0, and define

ai = W i − W i−1 > 0 for 1 � i � n,

B = {1,2, . . . ,n}n,

I = {1} × {1,2} × {1,2,3} × · · · × {1,2,3, . . . ,n} ⊆ B
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and for ρ = (ρ1, . . . , ρn) ∈ B, we define the open box

Bρ = (Wρ1−1, Wρ1) × (Wρ2−1, Wρ2) × · · · × (Wρn−1, Wρn ).

Note that the dimensions of Bρ are aρ1 × aρ2 × · · · × aρn . Observe that those boxes Bρ for which ρ ∈ I lie within B , and
indeed partition B up to a set of volume zero (namely, the boundaries of the boxes). Also, note that if ρ ∈ B and ρi = ρ j
for some i �= j, then Bρ is symmetric about the hyperplane {xi = x j}, whereas if ρi < ρ j , then the hyperplane {xi = x j} does
not intersect Bρ at all.

The motivation for all of these definitions is to simplify the computation of the volumes of the Cπ . We begin with the
following immediate observation:

Lemma 2.2. For any ρ ∈ B and any π ∈ Sn, ρπ(1) � ρπ(2) � · · · � ρπ(n) if and only if all points x ∈ Bρ satisfy xπ(1) � xπ(2) � · · · �
xπ(n) .

The symmetric group Sn acts on B by permuting coordinates. Each box Bρ has a stabilizer Gρ � Sn under this action. In
fact, Gρ is isomorphic to a product of symmetric groups

Gρ � Sn1 × · · · × Snk

where n j is the number of occurrences of the number j in ρ . Observe that Gρ also acts faithfully on Bρ by permut-
ing coordinates, and so partitions Bρ into |Gρ | equal-volume fundamental domains. We thus have the following volume
computation:

Lemma 2.3.

Vol(Cπ ∩ Bρ) =
{

0 if Cπ ∩ Bρ = ∅,

1
|Gρ |aρ1aρ2 · · ·aρn otherwise.

3. Proof of the main theorem

For the following lemmata and their proofs, we adopt the following notation: Let ρ = (ρ1, . . . , ρn) ∈ B, π ∈ Sn , and let
λ = (λ1, λ2, . . . , λn) ∈ B be such that λi = ρπ(i) .

Lemma 3.1. Cπ meets Bρ if and only if λ is a partition and λ(i) � π(i).

Proof. By Lemma 2.2, Cπ meets Bρ if and only if ρ ∈ I and ρπ(1) � · · · � ρπ(n) . Now, ρ ∈ I ⇔ ρi � i ⇔ λi � π(i); similarly,
ρπ(1) � · · · � ρπ(n) is equivalent to λ1 � · · · � λn . �

Recall that the set of integer partitions forms a distributive lattice, Young’s lattice, under the partial order of inclusion of
Young diagrams. See, for example, [6, Section 7.2] for an introduction to Young’s lattice.

Definition 3.2. Let λmax(π) = ⋃{μ ∈ P : μ is a partition with n parts and μi � π(i)}, where
⋃

denotes union of Young
diagrams (the least upper bound in Young’s lattice).

Lemma 3.3. Cπ meets Bρ if and only if λ is a partition and λ ⊆ λmax as Young diagrams.

Proof. It is easy to check that if λ and μ are partitions which meet the condition of Lemma 3.1, then so is λ∪μ (their union
as Young diagrams). Moreover, if ν ⊆ λ, then ν meets the conditions of Lemma 3.1. As such, the condition of Lemma 3.1 is
equivalent to λ ⊆ λmax. �
Proof of Theorem 1.2. If λ is a partition, write ρ(λ) = (λπ−1(1), . . . , λπ−1(n)). Taking ρ = ρ(λ) and applying Lem-
mas 2.3 and 3.3, we see that

Vol(Cπ ) =
∑

λ⊆λmax(π)

1

|Gρ(λ)|
∏

i

aλi =
∑

λ⊆λmax(π)

1

|Gλ|
∏

i

aλi .

The latter equality holds because Gρ is isomorphic to Gσ ·ρ for any permutation σ ∈ Sn . As such, Vol(Cπ ) = Vol(Cπ ′ ) if and
only if λmax(π) = λmax(π ′).

Next, we need a concrete description of λmax(π). Let λ be a partition such that λi � π(i). In particular,
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λ1 � π(1),

λ2 � min
{
λ1,π(2)

}
� min

{
π(1),π(2)

}
,

...

λn � min
{
λn−1,π(n)

}
� min

{
π(1), . . . ,π(n)

}
.

Now, λ is maximal in Young’s lattice if we replace all of the above inequalities with equalities. Therefore, λmax
i =

min{π(1), . . . ,π(i)}.
Recalling Definition 1.1, we now compare λmax(π) to ψ(π). Observe that the permutation matrix for π has ones in

positions (i,π(i)) and zeros elsewhere, so the ith part of ψ(π) is min{π(1),π(2), . . . ,π(i)}−1. In other words, one obtains
ψ(π) by deleting the first column of the Young diagram of λmax; this column is necessarily of height n, so one can also
reconstruct λmax(π) given ψ(π) (see Fig. 2, left and center images). We conclude that if π , π ′ are permutations in Sn , then

Vol(Cπ ) = Vol(Cπ ′) ⇔ λmax(π) = λmax(π ′) ⇔ ψ(π) = ψ
(
π ′). �
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