Group Theory

Spectral gaps in $S U(d)$

Trou spectral dans SU(d)

Jean Bourgain ${ }^{\text {a }}$, Alexander Gamburd ${ }^{\text {b }}$
${ }^{a}$ IAS, 1 Einstein Drive, Princeton, NJ 08540, USA
b UCSC, 1156 High Street, Santa Cruz, CA 95064, USA

ARTICLE INFO

Article history:

Received 9 April 2010
Accepted 15 April 2010
Available online 4 May 2010
Presented by Jean Bourgain

Abstract

It is shown that if g_{1}, \ldots, g_{k} are algebraic elements in $S U(d)$ generating a dense subgroup, then the corresponding Hecke operator has a spectral gap.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On démontre que si g_{1}, \ldots, g_{k} sont des éléments algébriques de $S U(d)$ et le groupe engendré par g_{1}, \ldots, g_{k} est dense, alors l'opérateur de Hecke défini par ces éléments a un trou spectral.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit $g_{1}, \ldots, g_{k} \in S U(d) \cap \operatorname{Mat}_{d \times d}(\overline{\mathbb{Q}})$ et $\Gamma=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ le groupe engendré par g_{1}, \ldots, g_{k}. Supposons Γ dense dans SU(d).

Théorème. L'opérateur de Hecke

$$
T f(x)=\frac{1}{2 k} \sum_{1 \leqslant j \leqslant k}\left(f\left(g_{j} x\right)+f\left(g_{j}^{-1} x\right)\right)
$$

a un trou spectral.
Ceci généralize le résultat antérieur [4] pour $S U(2)$. L'approche suivie ici diffère cependant et elle est essentiellement analogue à celle de [5] pour les groupes $S L_{d}\left(p^{n}\right)$ avec p fixé et $n \rightarrow \infty$. Des techniques d'arithmétique combinatoire, de la theorie des représentations et produits aléatoires de matrices y sont utilisées.

1. We assume $g_{1}, \ldots, g_{k} \in S U(d) \cap \operatorname{Mat}_{d \times d}(\overline{\mathbb{Q}})$ and denote $\Gamma=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ the generated group. Assume further that Γ is Zariski dense in $S L_{d}$ or, equivalently, that Γ is topologically dense in $S U(d)$.

Denote

$$
(T f)(x)=\frac{1}{2 k} \sum_{j=1}^{k}\left(f\left(g_{j} x\right)+f\left(g_{j}^{-1} x\right)\right)
$$

the corresponding Hecke operator acting on $L^{2}(G), G=S U(d)$.

[^0]Theorem 1. T has a spectral gap.
The result for $d=2$ was obtained in [4]. As in [4], we rely on methods from arithmetic combinatorics. But the approach followed here is significantly different from that of [4] and resembles that of [5] on expansion in groups $S_{d}\left(p^{n}\right)$ with p fixed and $n \rightarrow \infty$. Similarly to [5], the assumption of Zariski density is exploited through the theory of random matrix products (cf. [1]).
2. By a result of [6], we may take $k=2$ and assume $\left\{g_{1}, g_{2}\right\}$ free generators of the free group F_{2}. Define

$$
v=\frac{1}{4}\left(\delta_{g_{1}}+\delta_{g_{2}}+\delta_{g_{1}^{-1}}+\delta_{g_{2}^{-1}}\right)
$$

the symmetric probability measure on G and denote $\nu^{(\ell)}$ its ℓ-fold convolution power. Set for $\delta>0$

$$
P_{\delta}=\frac{1_{B(1, \delta)}}{|B(1, \delta)|}
$$

providing an approximate identity on G.

Proposition 1. There is $\kappa>0$ such that if G_{1} is a non-trivial closed subgroup of G, then

$$
\begin{equation*}
v^{(\ell)}\left(G_{1}\right)<e^{-\kappa \ell} \text { for } \ell \rightarrow \infty \tag{1}
\end{equation*}
$$

The proof of this 'escape property' relies on our assumption that Γ is Zariski dense and results on random matrix products, that are applied in suitable exterior powers of the adjoint representation of G. As in [4], we establish the following 'flattening property':

Proposition 2. Given $\tau>0$, there is a positive integer $\ell<C(\tau) \log \frac{1}{\delta}$ such that

$$
\begin{equation*}
\left\|v^{(\ell)} * P_{\delta}\right\|_{\infty}<\delta^{-\tau} \tag{2}
\end{equation*}
$$

It is derived by straightforward iteration of
Lemma 1. Given $\gamma>0$, there is $\kappa>0$ such that for $\delta>0$ small enough, $\ell \sim \log \frac{1}{\delta}$, if

$$
\begin{equation*}
\left\|v^{(\ell)} * P_{\delta}\right\|_{2}>\delta^{-\gamma} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|v^{(2 \ell)} * P_{\delta}\right\|_{2}<\delta^{\kappa}\left\|v^{(\ell)} * P_{\delta}\right\|_{\delta} \tag{4}
\end{equation*}
$$

With Proposition 2 at hand, the proof of a spectral gap may then be completed by considerations from representation theory (the Sarnak-Xue argument, also used in [4], or variants).
3. Returning to Lemma 1, the first step is to apply T. Tao's version of the Balog-Szemeredi-Gowers lemma (cf. [7]) for compact groups. Denoting $\mu=v^{(\ell)} * P_{\delta}$ and assuming (4) fails, one obtains a subset $H \subset G, H$ a union of δ-balls, and a finite subset X of G such that
(5) $H=H^{-1}$,
(6) $H . H \subset H . X \cap X . H$,
(7) $|X|<\delta^{-\varepsilon}$,
(8) $\mu(a H)>\delta^{\varepsilon}$ for some $a \in G$,
(9) $|H|<\delta^{\gamma}$
(here $\varepsilon>0$ is an arbitrary small, fixed number and || is used in (7) to denote 'cardinality' and in (9) for 'Haar-measure').
Recall that (5)-(6) mean that H is an 'approximate group' (cf. [7]). The goal is to show that properties (5)-(9) are not compatible and get a contradiction.
4. Next we specify some technical ingredients.

Crucial use is made of the 'discretized ring theorem' (see [2,3]). The version needed here is the following

Proposition 3. Given $\sigma>0$, there is $\gamma>0$ such that if $\delta>0$ is small enough and $A \subset \mathbb{C}^{d} \cap B(0,1)$ satisfies

$$
\begin{equation*}
N(A, \delta)>\delta^{-\sigma} \tag{10}
\end{equation*}
$$

then there is $\xi \in \mathbb{C}^{d},|\xi|=1$ such that

$$
\begin{equation*}
\left[0, \delta^{\gamma}\right] \xi \subset A^{\prime}+B\left(0, \delta^{\gamma+1}\right) \tag{11}
\end{equation*}
$$

Here A^{\prime} denotes a 'sum-product' set $s_{1} A^{\left(s_{2}\right)}-s_{1} A^{\left(s_{2}\right)}$ of A, with s_{1}, s_{2} bounded in terms of σ.
In (10), $N(A, \delta)$ refers to the metrical entropy, i.e. the minimum number of δ-balls needed to cover A. We used the notations $s \mathcal{A}=\underbrace{\mathcal{A}+\cdots+\mathcal{A}}_{s \text {-fold }}$ and $\mathcal{A}^{(s)}=\underbrace{\mathcal{A} \cdots \mathcal{A}}_{s \text {-fold }}$ for the s-fold sum (resp. product) sets.

Proposition 3 is derived from the following result that generalizes [3]:
Theorem 2. Let $A \subset[0,1]^{d}$ satisfy

$$
\begin{equation*}
N(A, \delta)=\delta^{-\sigma} \quad(0<\sigma<d) \tag{12}
\end{equation*}
$$

and also a non-concentration property

$$
\begin{equation*}
N(A \cap I, \delta)<c \delta_{1}^{\kappa} N(A, \delta) \quad \text { if } \delta<\delta_{1}<1 \text { and I any } \delta_{1} \text {-ball. } \tag{13}
\end{equation*}
$$

Let μ be a probability measure on $\mathcal{L}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that

$$
\begin{align*}
& \|b\| \leqslant 1 \quad \text { for } b \in \operatorname{supp} \mu \\
& \max _{|v|=1=|w|} \mu\left[|\langle b v, w\rangle|<\delta_{1}\right]<\delta_{1}^{\kappa} \quad \text { if } \delta<\delta_{1}<1 . \tag{14}
\end{align*}
$$

Then, for some $b \in \operatorname{supp} \mu$

$$
\begin{equation*}
N(A+A, \delta)+N(A+b A, \delta)>\delta^{-\sigma-\tau} \tag{15}
\end{equation*}
$$

with $\tau=\tau(\sigma, \kappa)>0$.
In order to apply Proposition 3, we construct 'almost' diagonal sets of matrices, using the following:
Lemma 2. Assume $\left\{g_{1}, g_{2}\right\}$ in $U(d) \cap \operatorname{Mat}_{d \times d}(\bar{Q})$ generate a free group and let $H \subset W_{\ell}\left(g_{1}, g_{2}\right)$ ($=$ the set of 'words' or length $\leqslant \ell$) satisfy

$$
\begin{equation*}
\log |H|>c \ell \tag{16}
\end{equation*}
$$

Then there is a subset A of a product set $H^{(s)}, s<C$ and $\delta>0$ such that
(17) $\log \frac{1}{\delta} \sim \ell$.
(18) The elements of A are δ-separated.
(19) In an appropriate orthonormal basis, we have

$$
\operatorname{dist}(x, \Delta)<\delta \quad \text { for } x \in A
$$

where Δ denotes the set of diagonal matrices.

Acknowledgements

The first author was supported in part by NSF, grant 0808042. The second author was supported in part by DARPA, NSF and Sloan Foundation.

References

[1] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985.
[2] J. Bourgain, On the Erdos-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2) (2003) 334-365.
[3] J. Bourgain, The discretized ring and projection theorems, J. Anal., in press.
[4] J. Bourgain, A. Gamburd, On the spectral gap for finitely generated subgroups of $S U(2)$, Invent. Math. 171 (1) (2008) 83-121.
[5] J. Bourgain, A. Gamburd, Expansion and random walks in $S L_{d}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$, II, J. Eur. Math. Soc. (JEMS) 11 (5) (2009) 1057-1103.
[6] E. Breuillard, T. Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2) (2003) 448-467.
[7] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, 2006.

[^0]: E-mail addresses: bourgain@math.ias.edu (J. Bourgain), agamburd@ucsc.edu (A. Gamburd).
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.04.024

