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Any finite-dimensional complex pointed Hopf algebra with group of group-likes isomorphic
to a sporadic group, with the possible exception of the Fischer group Fi22, the Baby Monster
B and the Monster M , is a group algebra.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit G un groupe sporadique différent du groupe de Fischer Fi22, du bébé monstre B et
du monstre M . Soit H une algèbre de Hopf complexe pointée de dimension finie dont le
groupe des éléments dont le co-produit est égal au carré tensoriel est isomorphisme à G ,
alors H est isomorphe a l’algèbre de groupe de G .

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let k be an algebraically closed field of characteristic 0. In this Note, we announce a new contribution to the classification
of finite-dimensional Hopf algebras over k. As is known, different classes of finite-dimensional Hopf algebras have to be
studied separately because the pertaining methods are radically different. There is a method for pointed Hopf algebras
(those whose coradical is a group algebra kG) that has been applied with satisfactory results when G is Abelian [8]; an
exposition of the method can be found in [7]. Recently, it appeared that many finite simple (or almost simple) groups G
admit very few finite-dimensional, pointed Hopf algebras with coradical isomorphic to kG:

– Any finite-dimensional complex pointed Hopf algebra with group of group-likes isomorphic to Am , m � 5, is a group
algebra [2].

– Same for the groups SL(2,2n), n > 1 [10] and M20, M21 = P SL(3,4) [11].
– Most of the pointed Hopf algebras over the symmetric groups have infinite dimension, with the exception of a short list

of open possibilities, see [2,4] and references therein. More precisely, most of the irreducible Yetter–Drinfeld modules
have infinite-dimensional Nichols algebras (see below).
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This is a report on finite-dimensional pointed Hopf algebras over sporadic simple groups. As part of our results, we have
the following:

Theorem 1. Let G be any sporadic simple group, different from the Fischer group Fi22 , the Baby Monster B and the Monster M. If H is
a finite-dimensional pointed Hopf algebra with G(H) � G, then H � kG.

The Theorem holds more generally over any field of characteristic 0, since the property of being pointed is stable under
extension of scalars.

1.1. Glossary

For the reader’s convenience, we recall a few definitions that are central to our work. More information can be found in
[5,7]. Let H be a Hopf algebra with comultiplication � and bijective antipode S .

• An element g �= 0 in H is a grouplike if �(g) = g ⊗ g; the set of all grouplikes is a group G(H) with multiplication
given by the product of H .

• A Yetter–Drinfeld module over H is a left H-module M that bears also a structure λ : M → H ⊗ M of H-comodule,
compatible with the action in an appropriate sense. If H is finite-dimensional, then a Yetter–Drinfeld module is the
same as a module over the Drinfeld double of H . For instance, if H = kG is the group algebra of a finite group G ,
then a Yetter–Drinfeld module over H is a left G-module M that bears also a G-gradation M = ⊕

g∈G Mg , compatibility
meaning that h · Mg = Mhgh−1 for all h, g ∈ G .

• A rack is a pair (X,�) where X is a non-empty set and � : X × X → X is an operation such that the map ϕx = x � is
bijective for any x ∈ X , and x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ X . A map q : X × X → GL(n,k) is a 2-cocycle of
degree n if

qx,y�zqy,z = qx�y,x�zqx,z, for all x, y, z ∈ X .

• A braided vector space is a pair (V , c) where V is a vector space and c ∈ GL(V ⊗ V ) fulfills the braid equation: (c ⊗
id)(id ⊗c)(c ⊗ id) = (id⊗c)(c ⊗ id)(id ⊗c). Examples:
(i) Any Yetter–Drinfeld module is a braided vector space in a natural way.

(ii) Let X be a finite rack, q a 2-cocycle of degree n, V = kX ⊗ kn , where kX is the vector space with basis ex , x ∈ X .
We denote ex v := ex ⊗ v . Consider the linear isomorphism cq : V ⊗ V → V ⊗ V , cq(ex v ⊗ e y w) = ex�yqx,y(w) ⊗ ex v ,
x, y ∈ X , v, w ∈ kn . Then (V , cq) is a braided vector space.

The braided vector spaces arising as Yetter–Drinfeld modules over group algebras of finite groups can be presented in
terms of racks and cocycles, see a bit more of information below.

• We assume the reader familiar with the important notion of the Nichols algebra of a braided vector space, discussed at
length in [7]. In short, one of the possible definitions of the Nichols algebra B(V ) of a braided vector space (V , c) is
as follows. Since c satisfies the braid equation, it induces a representation of the braid group Bn , ρn : Bn → GL(V ⊗n),
for each n � 2. Let Q n = ∑

σ∈Sn
ρn(M(σ )) ∈ End(V ⊗n), where M : Sn → Bn is the so-called Matsumoto section (not a

morphism of groups, but preserves product when length is preserved). Then B(V ) is the quotient of the tensor algebra
T (V ) by

⊕
n�2 ker Q n , in fact a 2-sided ideal of T (V ). If c is the usual switch, then B(V ) is just the symmetric algebra

of V ; but in general the determination of a Nichols algebra is quite a difficult task.

2. Outline of the proof

A complete proof of Theorem 1 for the groups M22 and M24 is contained in [9]; the proof for the other groups is
included in [3].

We sketch now the proof in two main reductions. The first one has been explained in several places, with detail
in [7], but we include a brief summary for completeness. We remind that if U is a braided vector subspace of V , then
B(U ) ↪→ B(V ).

2.1. A general reduction

Let G be a finite group, H a pointed Hopf algebra with G(H) � G . Then there are two basic invariants of H , a Yetter–
Drinfeld module V over kG (called the infinitesimal braiding of H) and its Nichols algebra B(V ). We have |G|dimB(V ) �
dim H . Therefore, the following statements are equivalent:

(1) If H is a finite-dimensional pointed Hopf algebra with G(H) � G , then H � kG .
(2) If V �= 0 is a Yetter–Drinfeld module over kG , then dimB(V ) = ∞.
(3) If V is an irreducible Yetter–Drinfeld module over kG , then dimB(V ) = ∞.
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2.2. Looking at subracks

We focus on (3) above. The second reduction has been the basis of our recent papers. It starts from the well-known
classification of irreducible Yetter–Drinfeld modules over kG by pairs (O,ρ), where O is a conjugacy class in G and ρ is an
irreducible representation of the stabilizer Gs of a fixed point s ∈ O. Now, the definition of the Nichols algebra B(O,ρ) of
the corresponding Yetter–Drinfeld module M(O,ρ) just depends on the braiding. If dimρ = 1, then this braiding depends
only on the rack O and a 2-cocycle q : O × O → k× [5]. Namely, O is a rack with the product x � y := xyx−1, M(O,ρ)

has a natural basis (ex)x∈O and the braiding is given by c(ex ⊗ e y) = qxyex�y ⊗ ex . If there exists a subrack X of O such
that the Nichols algebra of the braided vector space defined by X and the restriction of q is infinite dimensional, then
dimB(O,ρ) = ∞.

We recall some examples of racks which are relevant in this work.

(i) Abelian racks: those racks X such that x � y = y for all x, y ∈ X .
(ii) D p : the class of involutions in the dihedral group Dp (of order 2p), p a prime.

(iii) O: the class of 4-cycles in S4.
(iv) Doubles of racks: if X is a rack, then X (2) denotes the disjoint union of two copies of X each acting on the other by

left multiplication.

We are interested in finding subracks which are Abelian, or isomorphic to D(2)
p or to O(2) , by the following reasons:

(A) If X is Abelian, then the corresponding braided vector space is of diagonal type. Braided vector spaces of diagonal type
with finite-dimensional Nichols algebra where classified in [13]; thus, we just need to check if the matrix (qxy) belongs
or not to the list in [13].

(B) If X is isomorphic either to D(2)
p or to O(2) , then for some specific cocycles, the related Nichols algebras have infinite

dimension [6, Ths. 4.7, 4.8].

Variations:

(a) If dimρ > 1, similar arguments apply.
(b) Sometimes the rack X is not Abelian, but the braided vector space produced by X and the 2-cocycle can be realized

with an Abelian rack, by a suitable change of basis.
(c) Let F < G be a subgroup, s ∈ F , O F , resp. O G the conjugacy class of s in F , resp. in G . If dimB(O F , τ ) = ∞ for any

irreducible representation τ of F s , then dimB(O G ,ρ) = ∞ for any irreducible representation ρ of Gs .
(d) A conjugacy class O is real if O = O−1. It is quasireal if O = Om for some integer m, 1 < m < N , where N is the

order of the elements in O. The search of subracks isomorphic to D(2)
p or to O(2) , as well as the verification that the

restriction of the cocycle q is as needed in (2.2), is greatly simplified in a real (quasireal) conjugacy class [1].
(e) We say that a rack X is of type D if there exists a decomposable subrack Y = R

∐
S of X such that r � (s � (r � s)) �= s,

for some r ∈ R, s ∈ S . If a conjugacy class O is a rack of type D, then dimB(O,ρ) = ∞ for any ρ (see [2] and Theorem
8.6 of [14]).

2.3. Computations

We now fix a sporadic group G as in Theorem 1. We extracted relevant information from the ATLAS [15] with the
AtlasRep package [16]. Then, we checked when a conjugacy class is real or quasireal or of type D. We used GAP [12] for
the computations.

These tools allow us to apply the techniques sketched above to all pairs (O,ρ) and establish the validity of (2.1).

2.4.

Some of these results were announced in several meetings:

– Hopf Algebras and Related Topics, A conference in honor of Professor Susan Montgomery. University of Southern Cali-
fornia, Los Angeles, USA. February 2009.

– IV Encuentro Nacional de Álgebra, Córdoba, Argentina. August, 2008.
– First De Brún Workshop on Computational Algebra, National University of Ireland, Galway, Ireland. August, 2008
– Groupes quantiques dynamiques et cagories de fusion. CIRM, Luminy, France. April 2008.
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