

Number Theory

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

(1)

www.sciencedirect.com

A ring of periods for Sen modules in the imperfect residue field case

Un anneau des périodes pour les modules de Sen dans le cas du corps résiduel imparfait

Shun Ohkubo

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

ARTICLE INFO

Article history: Received 21 August 2009 Accepted after revision 23 March 2010 Available online 7 May 2010

Presented by Jean-Pierre Serre

ABSTRACT

We construct a ring \mathbb{B}_{Sen} of Colmez in the imperfect residue field case. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous construisons un anneau B_{Sen} de Colmez dans le cas d'un corps résiduel imparfait. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we use the notation of [1]: Let *p* be a prime number, *K* be a complete discrete valuation field of mixed characteristic (0, *p*). Let k_K be the residue field of *K* and assume $[k_K : k_K^p] = p^h < \infty$. Fix lifts $t_1, \ldots, t_h \in K$ of a *p*-basis of k_K and fix a compatible system $\{\zeta_{p^n}\}$ (resp. $\{t_j^{p^{-n}}\}$) of *p*-power roots of unity (resp. t_j). Put $K_{\infty} = K(\mu_{p^{\infty}}, t_1^{p^{-\infty}}, \ldots, t_h^{p^{-\infty}})$ and $\mathbb{C}_p = \widehat{K}$. Let $G_K = G_{\overline{K}, \mu_k}, K = G_{\overline{K}, \mu_k}$.

and $\mathbb{C}_p = \widehat{K}$. Let $G_K = G_{\overline{K}/K}$, $G_{K_{\infty}} = G_{\overline{K}/K_{\infty}}$, $\Gamma = G_{K_{\infty}/K}$. Let $\mathfrak{g} = \mathbb{Q}_p \ltimes \mathbb{Q}_p^h$ be the (h + 1)-dimensional *p*-adic Lie algebra where \mathbb{Q}_p acts on \mathbb{Q}_p^h by the scalar multiplication. Let $\varphi = (1, \mathbf{0}), \ \mu_j = (\mathbf{0}, \mathbf{e}_j) \in \mathfrak{g}$ for $1 \leq j \leq h$, where $\mathbf{e}_j \in \mathbb{Q}_p^h$ is the *j*th fundamental vector. Then we have

$$[\varphi, \mu_i] = \mu_i, [\mu_i, \mu_k] = 0$$

for $1 \leq j, k \leq h$. Let χ be the cyclotomic character and for $1 \leq j \leq h$, let $s_j : \mathfrak{g} \to \mathbb{Z}_p(1)$ be the 1-cocycle defined by $g(t_j^{p^{-n}})/t_j^{p^{-n}} = \zeta_{p^n}^{s_j(g)}$ for $n \in \mathbb{N}$.

The isomorphism $\Gamma \cong U \ltimes \mathbb{Z}_p(1)^h$; $\gamma \mapsto (\chi(\gamma), s_1(\gamma), \dots, s_h(\gamma))$ for some open subgroup $U \leqslant \mathbb{Z}_p^{\times}$ induces an isomorphism $\text{Lie}(\Gamma) \cong \mathfrak{g}$ of *p*-adic Lie algebras. In the following, we identify $\text{Lie}(\Gamma) = \mathfrak{g}$ by this isomorphism. Note that the usual logarithm map log : $\Gamma \to \mathfrak{g}$ satisfies

$$\log(\gamma) = \log(\chi(\gamma))\varphi + s_1(\gamma)\mu_1 + \dots + s_h(\gamma)\mu_h$$

for $\gamma \in \Gamma$.

Recall Brinon's generalization of Sen's theory [1]. For a topological field B with a continuous action of a topological group G, denote by $\operatorname{Rep}_B G$ the category of finite dimensional B-vector spaces with continuous, semi-linear G-action. Then there exist canonical equivalences

$$\operatorname{Rep}_{\mathbb{C}_{p}}G_{K} \to \operatorname{Rep}_{\widehat{K}_{\infty}}\Gamma; V \mapsto V^{G_{K_{\infty}}}, \qquad \operatorname{Rep}_{\widehat{K}_{\infty}}\Gamma \to \operatorname{Rep}_{K_{\infty}}\Gamma; V \mapsto V^{f},$$

E-mail address: shuno@ms.u-tokyo.ac.jp.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter C 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.04.020

which are quasi-inverse to $V \mapsto \mathbb{C}_p \otimes_{\widehat{K}_{\infty}} V$ and $V \mapsto \widehat{K}_{\infty} \otimes_{K_{\infty}} V$. For $V \in \operatorname{Rep}_{\mathbb{C}_p} G_K$, define $\mathbb{D}_{\operatorname{Sen}}(V)$ as the differential representation, whose dimension over K_{∞} is equal to that of V over \mathbb{C}_p , associated to $(V^{G_{K_{\infty}}})^{\mathrm{f}}$. Note that, for $v \in V$, there exists $\Gamma_v \leq_0 \Gamma$ such that

$$\gamma(\nu) = \exp(\log(\gamma))(\nu) \tag{2}$$

for $\gamma \in \Gamma_{\gamma}$.

In [2], Colmez defined a ring of periods \mathbb{B}_{Sen} and reconstructed the functor \mathbb{D}_{Sen} by using this ring in the case h = 0. The aim of this paper is to extend his results to the case h > 0.

2. Construction of \mathbb{B}_{Sen}

For $n \in \mathbb{N}$, let $K_n = K(\mu_{p^n}, t_1^{p^{-n}}, \dots, t_h^{p^{-n}})$ and $G_{K_n} = G_{\overline{K}/K_n}$. We say that an abelian group A has a $G_{K_{\infty}}$ -structure if A has an increasing filtration $\{A_n\}_{n \in \mathbb{N}}$, consisting of subgroups of A, such that $A = \bigcup A_n$ and that A_n has a filtration-compatible G_{K_n} -action. In this case, let $A^{G_{K_{\infty}}} = \bigcup A_n^{G_{K_n}}$.

We construct a ring \mathbb{B}_{Sen} with a $\overline{G}_{K_{\infty}}$ -structure as follows: As a ring, \mathbb{B}_{Sen} is the ring of formal power series of (h + 1)-variables X_0, \ldots, X_h with coefficients in \mathbb{C}_p converging on $\{(X_0, \ldots, X_h) \in \mathbb{C}_p^{h+1} | |X_0|, \ldots, |X_h| < \varepsilon\}$ for some $\varepsilon \in \mathbb{R}_{>0}$. For $n \in \mathbb{N}$, let $\mathbb{B}_{\text{Sen}}^n$ be the subring consisting of power series converging on the polydisc $\{X = (X_0, \ldots, X_h) \in \mathbb{C}_p^{h+1} | |X_0|, \ldots, |X_h| \leq p^n\}$. Then G_{K_n} acts on $\mathbb{B}_{\text{Sen}}^n$, semi-linearly on the coefficients, by

$$g(X_0) = X_0 + \log \chi(g),$$
 (3)

$$g(X_j) = \frac{1}{\chi(g)} \left(X_j + s_j(g) \right)$$
(4)

for $1 \leq j \leq h$. These data give \mathbb{B}_{Sen} a $G_{K_{\infty}}$ -structure. Finally, let $\partial_0, \ldots, \partial_h \in \text{Der}_{\mathbb{C}_p}^{\text{cont}}(\mathbb{B}_{Sen})$ be the continuous differential operators of \mathbb{B}_{Sen} defined by

$$\partial_0 = -\frac{\partial}{\partial X_0},\tag{5}$$

$$\partial_j = -\frac{1}{\exp(X_0)} \frac{\partial}{\partial X_j} \tag{6}$$

for $1 \leq j \leq h$. For $V \in \operatorname{Rep}_{\mathbb{C}_p} G_K$, endow $\mathbb{B}_{\operatorname{Sen}} \otimes_{\mathbb{C}_p} V$ with the $G_{K_{\infty}}$ -structure induced by that of $\mathbb{B}_{\operatorname{Sen}}$ and the action of G_K on V.

Lemma. (Cf. [2, Théorème 2(i)].)

(i) For all $n \in \mathbb{N}$, $(\mathbb{B}_{Sen}^n)^{G_{K_n}} = (\operatorname{Frac} \mathbb{B}_{Sen}^n)^{G_{K_n}} = K_n$ and $(\mathbb{B}_{Sen})^{G_{K_{\infty}}} = K_{\infty}$. (ii) Let $\mathfrak{g}_{K_{\infty}} = K_{\infty} \otimes_{\mathbb{Q}_p} \mathfrak{g}$. Then $(\mathbb{B}_{Sen} \otimes_{\mathbb{C}_p} V)^{G_{K_{\infty}}}$ is a $\mathfrak{g}_{K_{\infty}}$ -representation and we have $\dim_{K_{\infty}} (\mathbb{B}_{Sen} \otimes_{\mathbb{C}_p} V)^{G_{K_{\infty}}} \leq \dim_{\mathbb{C}_p} V$.

Proof. (i) Let $x \in (\mathbb{B}^n_{Sen})^{G_{K_n}}$. Since g(x) = x for $g \in G_{K_\infty}$, x has coefficients in \widehat{K}_∞ . Let $\Gamma_m = G_{K_\infty/K_m}$, $K_m^j = K(\mu_{p^\infty}, t_1^{p^{-\infty}}, \ldots, t_{j-1}^{p^{-m}}, t_j^{p^{-m}}, \ldots, t_h^{p^{-m}})$ and let $t_m : \widehat{K}_\infty \to \widehat{K}_m$ be the continuous map characterized by $t_m(x) = \varinjlim_{k \to \infty} [K_l : K_m]^{-1} \operatorname{Tr}_{K_l/K_m}(x)$ for $x \in K_\infty$. (The continuity of the trace follows from the decomposition into the composition of normalized trace maps

$$K_{\infty} \to K_m^h \to \cdots \to K_m^1 \to K_m,$$

which are continuous by [1, §2, after Lemme 3].) For $g \in \Gamma_m$ with $m \ge n$, by substituting $X = \mathbf{0}$ in g(x) = x and taking g^{-1} of both sides, we have $x(\mathbf{a}_m(g)) = g^{-1}(x(\mathbf{0}))$, where $\mathbf{a}_m : \Gamma_m \to \mathbb{Z}_p^{h+1}$; $g \mapsto (\log \chi(g), s_1(g)/\chi(g), \dots, s_h(g)/\chi(g))$. By taking the trace of both sides, we have $t_m(x)(\mathbf{a}_m(g)) = t_m(x)(\mathbf{0})$, hence $t_m(x)$ is a constant since the image of \mathbf{a}_m contains a polydisc. Note that for $a \in \widehat{K}_{\infty}$, $t_m(a) = 0$ for all sufficiently large m implies that a = 0 by approximating a by a sequence in $\{K_l\}_{l \ge m}$. Therefore x is a constant, that is, $x \in \mathbb{C}_p^{G_{K_n}} = K_n$.

Let $z = x/y \in (\operatorname{Frac} \mathbb{B}^n_{\operatorname{Sen}})^{G_{K_n}} \setminus \{0\}$ with $x, y \in \mathbb{B}^n_{\operatorname{Sen}} \setminus \{0\}$. We have only to prove $y \in (\mathbb{B}^m_{\operatorname{Sen}})^{\times}$ for sufficiently large m: This implies that $z \in (\mathbb{B}^m_{\operatorname{Sen}})^{G_{K_m}} = K_m$ by (i) and then $z \in K_m^{G_{K_m}/K_n} = K_n$.

We may assume that x, y are prime to each other. (Note that $\mathbb{B}_{\text{Sen}}^n$ is isomorphic to a Tate algebra, in particular, it is a UFD.) For $g \in G_{K_n}$, we have g(x)/g(y) = x/y. Hence we have $g(y) = \eta_g y$ with $\eta_g \in (\mathbb{B}_{\text{Sen}}^n)^{\times}$.

Now suppose $y(\mathbf{0}) = 0$. Then, just as in the above argument, by substituting $X = \mathbf{0}$ in $g(y) = \eta_g y$ and taking g^{-1} of both sides, we see that y vanishes on some polydisc in \mathbb{Z}_p^{h+1} . This implies that y = 0, which is a contradiction. Hence we have $y(\mathbf{0}) \neq 0$ and it is easy to see that $y \in (\mathbb{B}_{Sen}^m)^{\times}$ for sufficiently large m.

(ii) Since we have $[\partial_0, \partial_j] = \partial_j, [\partial_j, \partial_k] = 0$ for $1 \le j, k \le h$ by (5), (6), and these operators commute with the action of G_{K_n} on $\mathbb{B}^n_{\text{Sen}} \otimes_{\mathbb{C}_p} V$, the first assertion follows. The latter assertion follows from the injectivity of the comparison map

$$\alpha_n(V): \mathbb{B}^n_{\operatorname{Sen}} \otimes_{K_n} \left(\mathbb{B}^n_{\operatorname{Sen}} \otimes_{\mathbb{C}_p} V \right)^{G_{K_n}} \to \mathbb{B}^n_{\operatorname{Sen}} \otimes_{\mathbb{C}_p} V.$$

Suppose that $\alpha_n(V)$ is not injective. Let *d* be the smallest integer such that there exist linearly independent elements $\mathbf{e}_1, \ldots, \mathbf{e}_d \in (\mathbb{B}^n_{Sen} \otimes_{\mathbb{C}_p} V)^{G_{K_n}} \subset \mathbb{B}^n_{Sen} \otimes_{\mathbb{C}_p} V$ over K_n , which are linearly dependent over \mathbb{B}^n_{Sen} . Choose a non-trivial relation $\sum_i \lambda_i \mathbf{e}_i = 0$ with $\lambda_i \in \mathbb{B}^n_{Sen} \setminus \{0\}$. Then, by assumption, $g(\lambda_i/\lambda_1) = \lambda_i/\lambda_1$ for all $g \in G_{K_n}$. Hence $\lambda_i/\lambda_1 \in K_n$ by (i), which is a contradiction with the linear independence of the \mathbf{e}_i 's over K_n . \Box

Theorem. (*Cf.* [2, Théorème 2(ii)].) There exists a functorial isomorphism $\mathbb{D}_{Sen}(V) \to (\mathbb{B}_{Sen} \otimes_{\mathbb{C}_p} V)^{\mathcal{G}_{K_{\infty}}}$ of finite dimensional $\mathfrak{g}_{K_{\infty}}$ -representations.

Proof. Let $f : \mathbb{D}_{Sen}(V) \to \mathbb{B}_{Sen} \otimes_{\mathbb{C}_n} V$ be the injective K_{∞} -linear map defined by

$$f(v) = \exp(-X_1\mu_1 - \dots - X_h\mu_h) \exp(-X_0\varphi)(v)$$

= $\sum_{(n_0,\dots,n_h)\in\mathbb{N}^{h+1}} (-1)^{n_0+\dots+n_h} \frac{X_0^{n_0}X_1^{n_1}\cdots X_h^{n_h}}{n_0!\cdots n_h!} \otimes \mu_1^{n_1}\cdots \mu_h^{n_h}\varphi^{n_0}(v).$

We will prove that this induces the desired isomorphism. Since we have $f \circ \varphi = \partial_0 \circ f$, $f \circ \mu_j = \partial_j \circ f$ for $1 \leq j \leq h$ by (1), (5), (6), f is a morphism of $\mathfrak{g}_{K_{\infty}}$ -representations. To prove that f is an isomorphism, since we have $\dim_{K_{\infty}}(\mathbb{B}_{Sen} \otimes_{\mathbb{C}_p} V)^{G_{K_{\infty}}} \leq \dim_{\mathbb{C}_p} V = \dim_{K_{\infty}} \mathbb{D}_{Sen}(V)$ by Lemma (ii), we have only to prove that, for $v \in \mathbb{D}_{Sen}(V)$, we have $f(v) \in (\mathbb{B}_{Sen}^n \otimes_{\mathbb{C}_p} V)^{G_{K_n}}$ for sufficiently large n.

Recall that we have relations

$$g \circ \varphi = \left(\varphi - s_1(g)\mu_1 - \dots - s_h(g)\mu_h\right) \circ g,\tag{7}$$

$$g \circ \mu_j = \chi(g)\mu_j \circ g \tag{8}$$

for $g \in \Gamma$ and $1 \leq j \leq h$. (The proof is similar to that of [1, Proposition 7].)

Obviously, the action of G_K on $\operatorname{Im}(f)$ factors through Γ . Let $\Gamma^0 = G_{K_\infty/K(t_1^{p^{-\infty}}, \dots, t_h^{p^{-\infty}})}$ and $\Gamma^j = G_{K_\infty/K(\mu_p^{p^{-\infty}}, t_{j+1}^{p^{-\infty}}, t_h^{p^{-\infty}})}$ for $1 \le j \le h$. These subgroups topologically generate Γ . In the following, we prove that for $v \in \mathbb{D}_{\operatorname{Sen}}(V)$, for $0 \le j \le h$ and $\gamma \in \Gamma^j$ sufficiently close to 1, one has $\gamma(f(v)) = f(v)$.

For $\gamma \in \Gamma^0 \cap \Gamma_v$, we have

$$\gamma(f(v)) = \exp\left(-\frac{1}{\chi(\gamma)}X_1 \cdot \chi(\gamma)\mu_1 - \dots - \frac{1}{\chi(\gamma)}X_h \cdot \chi(\gamma)\mu_h\right)\gamma\left(\exp(-X_0\varphi)(v)\right) \quad (by (4), (8))$$
$$= \exp(-X_1\mu_1 - \dots - X_h\mu_h)\exp\left(-(X_0 + \log\chi(\gamma))\varphi\right)\gamma(v) \quad (by (3), (7))$$
$$= \exp(-X_1\mu_1 - \dots - X_h\mu_h)\exp\left(-(X_0 + \log\chi(\gamma))\varphi\right)\exp\left(\log\chi(\gamma)\varphi\right)(v) \quad (by (2))$$
$$= f(v).$$

For $\gamma \in \Gamma^j \cap \Gamma_v$, $1 \leq j \leq h$, we have

$$\begin{aligned} \gamma(f(v)) &= \exp(-X_1\mu_1 - \dots - (X_j + s_j(\gamma))\mu_j - \dots - X_h\mu_h)\gamma(\exp(-X_0\varphi)(v)) \quad (by (4), (8)) \\ &= \exp(-X_1\mu_1 - \dots - X_h\mu_h)\exp(-s_j(\gamma)\mu_j)\exp(-X_0(\varphi - s_j(\gamma)\mu_j))\gamma(v) \quad (by (1), (3), (7)) \\ &= \exp(-X_1\mu_1 - \dots - X_h\mu_h)\exp(-s_j(\gamma)\mu_j)\exp(-X_0(\varphi - s_j(\gamma)\mu_j))\exp(s_j(\gamma)\mu_j)(v) \quad (by (2)) \\ &= \exp(-X_1\mu_1 - \dots - X_h\mu_h)\exp(-s_j(\gamma)\mu_j)\exp(s_j(\gamma)\mu_j)\exp(-X_0\varphi)(v) \quad (by (1)) \\ &= f(v). \qquad \Box \end{aligned}$$

Acknowledgements

The author is grateful to his advisor Professor Atsushi Shiho for reviewing earlier drafts. The author was supported by Global COE Program of University of Tokyo.

References

^[1] O. Brinon, Une généralisation de la théorie de Sen, Math. Ann. 327 (4) (2003) 793-813.

^[2] P. Colmez, Sur un résultat de Shankar Sen, C. R. Acad. Sci. Paris, Ser. I 318 (11) (1994) 983-985.