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r é s u m é

Nous construisons un anneau BSen de Colmez dans le cas d’un corps résiduel imparfait.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we use the notation of [1]: Let p be a prime number, K be a complete discrete valuation field of mixed
characteristic (0, p). Let kK be the residue field of K and assume [kK : kp

K ] = ph < ∞. Fix lifts t1, . . . , th ∈ K of a p-basis of

kK and fix a compatible system {ζpn } (resp. {t p−n

j }) of p-power roots of unity (resp. t j). Put K∞ = K (μp∞ , t p−∞
1 , . . . , t p−∞

h )

and Cp = K̂ . Let G K = G K/K , G K∞ = G K/K∞ , Γ = G K∞/K .

Let g = Qp � Qh
p be the (h + 1)-dimensional p-adic Lie algebra where Qp acts on Qh

p by the scalar multiplication. Let

ϕ = (1,0), μ j = (0,e j) ∈ g for 1 � j � h, where e j ∈ Qh
p is the jth fundamental vector. Then we have

[ϕ,μ j] = μ j, [μ j,μk] = 0 (1)

for 1 � j,k � h. Let χ be the cyclotomic character and for 1 � j � h, let s j : g → Zp(1) be the 1-cocycle defined by

g(t p−n

j )/t p−n

j = ζ
s j(g)

pn for n ∈ N.

The isomorphism Γ ∼= U � Zp(1)h;γ �→ (χ(γ ), s1(γ ), . . . , sh(γ )) for some open subgroup U � Z×
p induces an isomor-

phism Lie(Γ ) ∼= g of p-adic Lie algebras. In the following, we identify Lie(Γ ) = g by this isomorphism. Note that the usual
logarithm map log : Γ → g satisfies

log(γ ) = log
(
χ(γ )

)
ϕ + s1(γ )μ1 + · · · + sh(γ )μh

for γ ∈ Γ .
Recall Brinon’s generalization of Sen’s theory [1]. For a topological field B with a continuous action of a topological

group G , denote by RepB G the category of finite dimensional B-vector spaces with continuous, semi-linear G-action. Then
there exist canonical equivalences

RepCp
G K → RepK̂∞Γ ; V �→ V G K∞ , RepK̂∞Γ → RepK∞Γ ; V �→ V f,
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which are quasi-inverse to V �→ Cp ⊗K̂∞ V and V �→ K̂∞ ⊗K∞ V . For V ∈ RepCp
G K , define DSen(V ) as the differential

representation, whose dimension over K∞ is equal to that of V over Cp , associated to (V G K∞ )f . Note that, for v ∈ V , there
exists Γv �o Γ such that

γ (v) = exp
(
log(γ )

)
(v) (2)

for γ ∈ Γv .
In [2], Colmez defined a ring of periods BSen and reconstructed the functor DSen by using this ring in the case h = 0. The

aim of this paper is to extend his results to the case h > 0.

2. Construction of BSen

For n ∈ N, let Kn = K (μpn , t p−n

1 , . . . , t p−n

h ) and G Kn = G K/Kn
. We say that an abelian group A has a G K∞ -structure if A has

an increasing filtration {An}n∈N , consisting of subgroups of A, such that A = ⋃
An and that An has a filtration-compatible

G Kn -action. In this case, let AG K∞ = ⋃
A

G Kn
n .

We construct a ring BSen with a G K∞ -structure as follows: As a ring, BSen is the ring of formal power series of (h + 1)-
variables X0, . . . , Xh with coefficients in Cp converging on {(X0, . . . , Xh) ∈ Ch+1

p ||X0|, . . . , |Xh| < ε} for some ε ∈ R>0.

For n ∈ N, let Bn
Sen be the subring consisting of power series converging on the polydisc {X = (X0, . . . , Xh) ∈ Ch+1

p |
|X0|, . . . , |Xh| � |pn|}. Then G Kn acts on Bn

Sen, semi-linearly on the coefficients, by

g(X0) = X0 + logχ(g), (3)

g(X j) = 1

χ(g)

(
X j + s j(g)

)
(4)

for 1 � j � h. These data give BSen a G K∞ -structure. Finally, let ∂0, . . . , ∂h ∈ Dercont
Cp

(BSen) be the continuous differential
operators of BSen defined by

∂0 = − ∂

∂ X0
, (5)

∂ j = − 1

exp(X0)

∂

∂ X j
(6)

for 1 � j � h. For V ∈ RepCp
G K , endow BSen ⊗Cp V with the G K∞ -structure induced by that of BSen and the action of G K

on V .

Lemma. (Cf. [2, Théorème 2(i)].)

(i) For all n ∈ N, (Bn
Sen)G Kn = (Frac Bn

Sen)G Kn = Kn and (BSen)G K∞ = K∞ .
(ii) Let gK∞ = K∞ ⊗Qp g. Then (BSen ⊗Cp V )G K∞ is a gK∞ -representation and we have dimK∞ (BSen ⊗Cp V )G K∞ � dimCp V .

Proof. (i) Let x ∈ (Bn
Sen)G Kn . Since g(x) = x for g ∈ G K∞ , x has coefficients in K̂∞ . Let Γm = G K∞/Km , K j

m = K (μp∞ , t p−∞
1 , . . . ,

t p−∞
j−1 , t p−m

j , . . . , t p−m

h ) and let tm : K̂∞ → K̂m be the continuous map characterized by tm(x) = lim−→l�m
[Kl : Km]−1 TrKl/Km (x) for

x ∈ K∞ . (The continuity of the trace follows from the decomposition into the composition of normalized trace maps

K∞ → K h
m → ·· · → K 1

m → Km,

which are continuous by [1, §2, after Lemme 3].) For g ∈ Γm with m � n, by substituting X = 0 in g(x) = x and taking
g−1 of both sides, we have x(am(g)) = g−1(x(0)), where am : Γm → Zh+1

p ; g �→ (logχ(g), s1(g)/χ(g), . . . , sh(g)/χ(g)). By
taking the trace of both sides, we have tm(x)(am(g)) = tm(x)(0), hence tm(x) is a constant since the image of am contains a
polydisc. Note that for a ∈ K̂∞ , tm(a) = 0 for all sufficiently large m implies that a = 0 by approximating a by a sequence in
{Kl}l�m . Therefore x is a constant, that is, x ∈ C

G Kn
p = Kn .

Let z = x/y ∈ (Frac Bn
Sen)G Kn \ {0} with x, y ∈ Bn

Sen \ {0}. We have only to prove y ∈ (Bm
Sen)× for sufficiently large m: This

implies that z ∈ (Bm
Sen)G Km = Km by (i) and then z ∈ K

G Km/Kn
m = Kn .

We may assume that x, y are prime to each other. (Note that Bn
Sen is isomorphic to a Tate algebra, in particular, it is a

UFD.) For g ∈ G Kn , we have g(x)/g(y) = x/y. Hence we have g(y) = ηg y with ηg ∈ (Bn
Sen)× .

Now suppose y(0) = 0. Then, just as in the above argument, by substituting X = 0 in g(y) = ηg y and taking g−1 of both
sides, we see that y vanishes on some polydisc in Zh+1

p . This implies that y = 0, which is a contradiction. Hence we have
y(0) �= 0 and it is easy to see that y ∈ (Bm )× for sufficiently large m.
Sen
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(ii) Since we have [∂0, ∂ j] = ∂ j, [∂ j, ∂k] = 0 for 1 � j, k � h by (5), (6), and these operators commute with the action of
G Kn on Bn

Sen ⊗Cp V , the first assertion follows. The latter assertion follows from the injectivity of the comparison map

αn(V ) : Bn
Sen ⊗Kn

(
Bn

Sen ⊗Cp V
)G Kn → Bn

Sen ⊗Cp V .

Suppose that αn(V ) is not injective. Let d be the smallest integer such that there exist linearly independent elements
e1, . . . ,ed ∈ (Bn

Sen ⊗Cp V )G Kn ⊂ Bn
Sen ⊗Cp V over Kn , which are linearly dependent over Bn

Sen. Choose a non-trivial relation∑
i λiei = 0 with λi ∈ Bn

Sen \ {0}. Then, by assumption, g(λi/λ1) = λi/λ1 for all g ∈ G Kn . Hence λi/λ1 ∈ Kn by (i), which is a
contradiction with the linear independence of the ei ’s over Kn . �
Theorem. (Cf. [2, Théorème 2(ii)].) There exists a functorial isomorphism DSen(V ) → (BSen ⊗Cp V )G K∞ of finite dimensional gK∞ -
representations.

Proof. Let f : DSen(V ) → BSen ⊗Cp V be the injective K∞-linear map defined by

f (v) = exp(−X1μ1 − · · · − Xhμh)exp(−X0ϕ)(v)

=
∑

(n0,...,nh)∈Nh+1

(−1)n0+···+nh
Xn0

0 Xn1
1 · · · Xnh

h

n0! · · ·nh! ⊗ μ
n1
1 · · ·μnh

h ϕn0(v).

We will prove that this induces the desired isomorphism. Since we have f ◦ ϕ = ∂0 ◦ f , f ◦ μ j = ∂ j ◦ f for 1 � j � h
by (1), (5), (6), f is a morphism of gK∞ -representations. To prove that f is an isomorphism, since we have dimK∞ (BSen ⊗Cp

V )G K∞ � dimCp V = dimK∞ DSen(V ) by Lemma (ii), we have only to prove that, for v ∈ DSen(V ), we have f (v) ∈ (Bn
Sen ⊗Cp

V )G Kn for sufficiently large n.
Recall that we have relations

g ◦ ϕ = (
ϕ − s1(g)μ1 − · · · − sh(g)μh

) ◦ g, (7)

g ◦ μ j = χ(g)μ j ◦ g (8)

for g ∈ Γ and 1 � j � h. (The proof is similar to that of [1, Proposition 7].)
Obviously, the action of G K on Im( f ) factors through Γ . Let Γ 0 = G

K∞/K (t p−∞
1 ,...,t p−∞

h )
and Γ j =

G
K∞/K (μp∞ ,t p−∞

1 ,...,t p−∞
j−1 ,t p−∞

j+1 ,t p−∞
h )

for 1 � j � h. These subgroups topologically generate Γ . In the following, we prove that

for v ∈ DSen(V ), for 0 � j � h and γ ∈ Γ j sufficiently close to 1, one has γ ( f (v)) = f (v).
For γ ∈ Γ 0 ∩ Γv , we have

γ
(

f (v)
) = exp

(
− 1

χ(γ )
X1 · χ(γ )μ1 − · · · − 1

χ(γ )
Xh · χ(γ )μh

)
γ

(
exp(−X0ϕ)(v)

) (
by (4), (8)

)
= exp(−X1μ1 − · · · − Xhμh)exp

(−(
X0 + logχ(γ )

)
ϕ

)
γ (v)

(
by (3), (7)

)
= exp(−X1μ1 − · · · − Xhμh)exp

(−(
X0 + logχ(γ )

)
ϕ

)
exp

(
logχ(γ )ϕ

)
(v)

(
by (2)

)
= f (v).

For γ ∈ Γ j ∩ Γv , 1 � j � h, we have

γ
(

f (v)
) = exp

(−X1μ1 − · · · − (
X j + s j(γ )

)
μ j − · · · − Xhμh

)
γ

(
exp(−X0ϕ)(v)

) (
by (4), (8)

)
= exp(−X1μ1 − · · · − Xhμh)exp

(−s j(γ )μ j
)

exp
(−X0

(
ϕ − s j(γ )μ j

))
γ (v)

(
by (1), (3), (7)

)
= exp(−X1μ1 − · · · − Xhμh)exp

(−s j(γ )μ j
)

exp
(−X0

(
ϕ − s j(γ )μ j

))
exp

(
s j(γ )μ j

)
(v)

(
by (2)

)
= exp(−X1μ1 − · · · − Xhμh)exp

(−s j(γ )μ j
)

exp
(
s j(γ )μ j

)
exp(−X0ϕ)(v)

(
by (1)

)
= f (v). �
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