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In this Note, we give a necessary and sufficient condition on deterministic g under which
g-expectations can be represented as Choquet expectations.
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r é s u m é

Dans cette Note, nous donnons une condition nécessaire et suffisante sur g déterministe
sous laquelle les g-espérances peut être représentée par les espérances de Choquet.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Peng [14] introduced the notions of g-expectations and conditional g-expectations via a class of backward stochastic
differential equations (BSDEs), and showed that g-expectations are dynamically consistent nonlinear expectations. Since
then, many researchers have been investigating the properties of g-expectations and their connection with other fields
(see [1–5,7,9–14] and the references therein). In [2] and [5], Chen et al. studied an integral representation problem: if a
g-expectation can be represented as a Choquet expectation, can we find the form of the generator g? For 1-dimensional
Brownian motion case, they gave a necessary and sufficient condition on g . But their method cannot be used for multi-
dimensional case. In this Note, we give a more simple and direct method to deal with this problem, especially for multi-
dimensional case.

2. Preliminaries

Let (Wt)t�0 be a d-dimensional standard Brownian motion defined on a completed probability space (Ω, F , P ) and
(Ft)t�0 be the natural filtration generated by this Brownian motion. Fix T > 0. We denote by L2(Ft), t ∈ [0, T ], the set of
all square integrable Ft -measurable random variables and L2(0, T ;R

n) the space of all progressively measurable, R
n-valued

processes (vt)t∈[0,T ] with E
∫ T

0 |vt |2 dt < ∞.
In this Note, we consider a deterministic function g : [0, T ] × R × R

d → R such that t �→ g(t, y, z) is measurable for each
(y, z) ∈ R × R

d . For the function g , we will use the following assumptions:

(H1) There exists a constant K � 0 such that∣∣g(t, y, z) − g
(
t, y′, z′)∣∣ � K

(∣∣y − y′∣∣ + ∣∣z − z′∣∣), ∀t, y, y′, z, z′.
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(H2) g(t, y,0) ≡ 0 for all (t, y) ∈ [0, T ] × R.
(H3) For each (y, z) ∈ R × R

d , t �→ g(t, y, z) is continuous.

Under the assumptions (H1) and (H2), Pardoux and Peng [12] showed that for each ξ ∈ L2(FT ), the BSDE

yt = ξ +
T∫

t

g(s, ys, zs)ds −
T∫

t

zs · dW s, t ∈ [0, T ], (1)

has a unique solution (yt, zt)t∈[0,T ] ∈ L2(0, T ;R
1+d). Using the solution of BSDE (1), Peng [14] proposed the following

notions:

Definition 2.1. Suppose g satisfies (H1) and (H2). For each ξ ∈ L2(FT ), let (yt, zt)t∈[0,T ] be the solution of BSDE (1), define

E g[ξ | Ft] := yt for t ∈ [0, T ].
E g[ξ | Ft] is called the conditional g-expectation of ξ with respect to Ft . In particular, if t = 0, we write E g[ξ ] which is
called the g-expectation of ξ .

Let g satisfy (H1) and (H2). The g-probability P g(·) is defined by

P g(A) := E g[I A] for all A ∈ FT .

The related Choquet expectation (see [6]) is denoted by C g , i.e.,

C g[ξ ] =
0∫

−∞

[
P g(ξ � t) − 1

]
dt +

∞∫
0

P g(ξ � t)dt for ξ ∈ L2(FT ).

Two random variables ξ and η are called comonotonic if[
ξ(ω) − ξ

(
ω′)][η(ω) − η

(
ω′)] � 0 for each ω,ω′ ∈ Ω.

The following properties of C g can be found in the book [8].

(1) Monotonicity: If ξ � η, then C g[ξ ] � C g[η].
(2) Positive homogeneity: If λ � 0, then C g[λξ ] = λC g[ξ ].
(3) Translation invariance: If c ∈ R, then C g[ξ + c] = C g[ξ ] + c.
(4) Comonotonic additivity: If ξ and η are comonotonic, then C g[ξ + η] = C g[ξ ] + C g[η].

3. Main result

Now we give the main result:

Theorem 3.1. Suppose g satisfies (H1)–(H3). Then the g-expectation can be represented as the Choquet expectation if and only if the
g-expectation is the classical linear expectation.

Remark 1. For the case d = 1, the above theorem is the main result in Chen et al. [2].

For proving this theorem, we need the following lemma, which is a direct consequence of Theorem 4.7 in [13]. We
always use the notation Wt = (W 1

t , . . . , W d
t ).

Lemma 3.2. Suppose that d = 2 and g satisfies (H1)–(H3). Then for each a, b, λ ∈ R, we have

E g[I[W 1
T �a] + λI[W 2

T �b] | Ft] = E g[I[W 1
T −W 1

t �a−x] + λI[W 2
T −W 2

t �b−y]]|(x,y)=(W 1
t ,W 2

t ).

Sketch of proof of Theorem 3.1. The sufficient condition is obvious. We now prove the necessary condition. For simplicity,
we only prove the case d = 2 (see [10] for general case). It follows from E g = C g and the properties of translation invariance
and positive homogeneity of C g that

E g[ξ + c] = E g[ξ ] + c for each c ∈ R; E g[λξ ] = λE g[ξ ] for each λ � 0.

Thus, by Theorems 3.1 and 3.4 in Jiang [11] (see also [1] and [2]), we obtain that g is independent of y and g(t, λz) =
λg(t, z) for each λ � 0. On the other hand, note that (1 − λ)I 1 1 and λ(I 1 1 + I 2 2 ) are comonotonic
[W T −Wt �a] [W T −Wt �a] [W T −Wt �b]
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for each λ ∈ (0,1), a, b ∈ R, then, by Lemma 3.2 and the comonotonic additivity of C g , we get the following key relation:
for each λ ∈ (0,1), t ∈ [0, T ], n ∈ N,

E g[I[W 1
T �n] + λI[W 2

T �0] | Ft] = λE g[I[W 1
T �n] + I[W 2

T �0] | Ft] + (1 − λ)E g[I[W 1
T �n] | Ft]. (2)

Let (yλ,n
t , zλ,n

t )t∈[0,T ] , ( ỹn
t , z̃n

t )t∈[0,T ] and ( ŷn
t , ẑn

t )t∈[0,T ] be the solutions of BSDE (1) corresponding to the terminal values
I[W 1

T �n] + λI[W 2
T �0] , I[W 1

T �n] + I[W 2
T �0] and I[W 1

T �n] , respectively. By (2), we have yλ,n
t = λ ỹn

t + (1 − λ) ŷn
t . From this and g is

independent of y, we deduce that for each λ ∈ (0,1),

dP × dt − a.s., g
(
t, λz̃n

t + (1 − λ)ẑn
t

) = λg
(
t, z̃n

t

) + (1 − λ)g
(
t, ẑn

t

)
.

Since λ ∈ (0,1) is arbitrary and g is positively homogeneous in z, we conclude that for each l � 0,

dP × dt − a.s., g
(
t, z̃n

t + lẑn
t

) = g
(
t, z̃n

t

) + g
(
t, lẑn

t

)
. (3)

It follows from Theorem 1 in [2] that g(t, z1,0) = g(t,1,0)z1 for each z1 ∈ R, t ∈ [0, T ]. Then we have

dP × dt − a.s., ẑn
t =

(
1√

2π(T − t)
exp

(
− (n − W 1

t − ∫ T
t g(s,1,0)ds)2

2(T − t)

)
,0

)
. (4)

Combining (3) with (4), we obtain that for each p � 0,

dP × dt − a.s., g
(
t, z̃n

t + (p,0)
) = g

(
t, z̃n

t

) + g(t, p,0). (5)

Let ( ȳt, z̄t)t∈[0,T ] be the solution of BSDE (1) corresponding to the terminal value I[W 2
T �0] . Noting that I[W 1

T �n] + I[W 2
T �0] →

I[W 2
T �0] in L2(FT ), by Theorem 2.3 in [13] (see also [1] and [9]), we have (z̃n

t )t∈[0,T ] → (z̄t)t∈[0,T ] in L2(0, T ;R
2). Since g

satisfies Lipschitz assumption (H1), we get for each p � 0,

g
(
t, z̃n

t + (p,0)
) → g

(
t, z̄t + (p,0)

)
in L2(0, T ;R).

This with (5) implies that for each p � 0,

dP × dt − a.s., g
(
t, z̄t + (p,0)

) = g(t, z̄t) + g(t, p,0). (6)

Also, by g(t,0, z2) = g(t,0,1)z2, we have

dP × dt − a.s., z̄t =
(

0,
1√

2π(T − t)
exp

(
− (W 2

t + ∫ T
t g(s,0,1)ds)2

2(T − t)

))
. (7)

Thus, by (6), (7) and g(t, λz) = λg(t, z) for each λ � 0, we obtain that for each z1 � 0, z2 � 0,

g(t, z1, z2) = g(t,1,0)z1 + g(t,0,1)z2. (8)

Similarly, we can obtain (8) for each (z1, z2) ∈ R
2. Then by the Girsanov Theorem, E g is the classical linear expectation. The

proof is completed. �
Remark 2. The key relation (2) is not trivial. Because the comonotonic additivity of g-expectation does not imply the
comonotonic additivity of conditional g-expectation, which is discussed in detail in [2]. Moreover, our method also holds
without the continuous assumption (H3) on g (see [10]).

Remark 3. In [7], the authors showed that a class of dynamically consistent nonlinear expectations must be g-expectations.
So, our result also indicates that Choquet expectations cannot be dynamically consistent in the sense in [7].

Acknowledgements

The author would like to thank Professors S. Peng and Z. Chen for their help and comments. The author would also like
to thank the anonymous referee for a careful reading of the paper and his/her suggestions.

References

[1] P. Briand, F. Coquet, Y. Hu, J. Mémin, S. Peng, A converse comparison theorem for BSDEs and related properties of g-expectation, Electronic Communi-
cations in Probability 5 (2000) 101–117.

[2] Z. Chen, T. Chen, M. Davison, Choquet expectation and Peng’s g-expectation, The Annals of Probability 33 (3) (2005) 1179–1199.
[3] Z. Chen, L. Epstein, Ambiguity, risk and asset returns in continuous time, Econometrica 70 (2002) 1403–1443.
[4] Z. Chen, R. Kulperger, Minimax pricing and Choquet pricing, Insurance: Mathematics and Economics 38 (2006) 518–528.
[5] Z. Chen, A. Sulem, An integral representation theorem of g-expectations, Research Report INRIA 4284 (2001) 1–20.
[6] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953) 131–195.



574 M. Hu / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 571–574
[7] F. Coquet, Y. Hu, J. Mémin, S. Peng, Filtration consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields 123
(2002) 1–27.

[8] D. Denneberg, Non-additive Measure and Integral, Kluwer Academic Publishers, Boston, 1994.
[9] N. El Karoui, S. Peng, M.C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance 7 (1997) 1–71.

[10] M. Hu, Choquet expectations and g-expectations with multi-dimensional Brownian motion, available via http://arxiv.org/abs/0910.2519, 2009.
[11] L. Jiang, Convexity, translation invariance and subadditivity for g-expectations and related risk measures, Annals of Applied Probability 18 (1) (2008)

245–258.
[12] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, Systems and Control Letters 14 (1990) 55–61.
[13] S. Peng, BSDE and stochastic optimizations, topics in stochastic analysis, in: J. Yan, S. Peng, S. Fang, L.M. Wu (Eds.), Lecture Notes of 1995 Summer

School in Mathematics, Science Press, Beijing, 1997, Ch. 2 (Chinese vers.).
[14] S. Peng, Backward SDE related g-expectations, Backward stochastic differential equations, in: N. El Karoui, L. Mazliak (Eds.), Pitman Research Notes in

Mathematics Series, vol. 364, Longman, Harlow, 1997, pp. 141–159.

http://arxiv.org/abs/0910.2519

	On the integral representation of g-expectations
	Introduction
	Preliminaries
	Main result
	Acknowledgements
	References


