On the integral representation of g-expectations

Sur le représentation intégrale pour les g-espérances

Mingshang Hu

School of Mathematics, Shandong University, Jinan 250100, China

A R T I C L E IN F O

Article history:

Received 22 January 2010
Accepted after revision 2 April 2010
Available online 24 April 2010
Presented by Marc Yor

Abstract

In this Note, we give a necessary and sufficient condition on deterministic g under which g-expectations can be represented as Choquet expectations. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans cette Note, nous donnons une condition nécessaire et suffisante sur g déterministe sous laquelle les g-espérances peut être représentée par les espérances de Choquet.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Peng [14] introduced the notions of g-expectations and conditional g-expectations via a class of backward stochastic differential equations (BSDEs), and showed that g-expectations are dynamically consistent nonlinear expectations. Since then, many researchers have been investigating the properties of g-expectations and their connection with other fields (see [1-5, $7,9-14$] and the references therein). In [2] and [5], Chen et al. studied an integral representation problem: if a g-expectation can be represented as a Choquet expectation, can we find the form of the generator g ? For 1-dimensional Brownian motion case, they gave a necessary and sufficient condition on g. But their method cannot be used for multidimensional case. In this Note, we give a more simple and direct method to deal with this problem, especially for multidimensional case.

2. Preliminaries

Let $\left(W_{t}\right)_{t \geqslant 0}$ be a d-dimensional standard Brownian motion defined on a completed probability space (Ω, \mathcal{F}, P) and $\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ be the natural filtration generated by this Brownian motion. Fix $T>0$. We denote by $L^{2}\left(\mathcal{F}_{t}\right), t \in[0, T]$, the set of all square integrable \mathcal{F}_{t}-measurable random variables and $L^{2}\left(0, T ; \mathbb{R}^{n}\right)$ the space of all progressively measurable, \mathbb{R}^{n}-valued processes $\left(v_{t}\right)_{t \in[0, T]}$ with $E \int_{0}^{T}\left|v_{t}\right|^{2} \mathrm{~d} t<\infty$.

In this Note, we consider a deterministic function $g:[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $t \mapsto g(t, y, z)$ is measurable for each $(y, z) \in \mathbb{R} \times \mathbb{R}^{d}$. For the function g, we will use the following assumptions:
(H1) There exists a constant $K \geqslant 0$ such that

$$
\left|g(t, y, z)-g\left(t, y^{\prime}, z^{\prime}\right)\right| \leqslant K\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right), \quad \forall t, y, y^{\prime}, z, z^{\prime}
$$

[^0](H2) $g(t, y, 0) \equiv 0$ for all $(t, y) \in[0, T] \times \mathbb{R}$.
(H3) For each $(y, z) \in \mathbb{R} \times \mathbb{R}^{d}, t \mapsto g(t, y, z)$ is continuous.
Under the assumptions (H1) and (H2), Pardoux and Peng [12] showed that for each $\xi \in L^{2}\left(\mathcal{F}_{T}\right)$, the BSDE
\[

$$
\begin{equation*}
y_{t}=\xi+\int_{t}^{T} g\left(s, y_{s}, z_{s}\right) \mathrm{d} s-\int_{t}^{T} z_{s} \cdot \mathrm{~d} W_{s}, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

\]

has a unique solution $\left(y_{t}, z_{t}\right)_{t \in[0, T]} \in L^{2}\left(0, T ; \mathbb{R}^{1+d}\right)$. Using the solution of BSDE (1), Peng [14] proposed the following notions:

Definition 2.1. Suppose g satisfies (H1) and (H2). For each $\xi \in L^{2}\left(\mathcal{F}_{T}\right)$, let $\left(y_{t}, z_{t}\right)_{t \in[0, T]}$ be the solution of BSDE (1), define

$$
\mathcal{E}_{g}\left[\xi \mid \mathcal{F}_{t}\right]:=y_{t} \quad \text { for } t \in[0, T]
$$

$\mathcal{E}_{g}\left[\xi \mid \mathcal{F}_{t}\right]$ is called the conditional g-expectation of ξ with respect to \mathcal{F}_{t}. In particular, if $t=0$, we write $\mathcal{E}_{g}[\xi]$ which is called the g-expectation of ξ.

Let g satisfy (H1) and (H2). The g-probability $P_{g}(\cdot)$ is defined by

$$
P_{g}(A):=\mathcal{E}_{g}\left[I_{A}\right] \quad \text { for all } A \in \mathcal{F}_{T} .
$$

The related Choquet expectation (see [6]) is denoted by \mathcal{C}_{g}, i.e.,

$$
\mathcal{C}_{g}[\xi]=\int_{-\infty}^{0}\left[P_{g}(\xi \geqslant t)-1\right] \mathrm{d} t+\int_{0}^{\infty} P_{g}(\xi \geqslant t) \mathrm{d} t \quad \text { for } \xi \in L^{2}\left(\mathcal{F}_{T}\right)
$$

Two random variables ξ and η are called comonotonic if

$$
\left[\xi(\omega)-\xi\left(\omega^{\prime}\right)\right]\left[\eta(\omega)-\eta\left(\omega^{\prime}\right)\right] \geqslant 0 \quad \text { for each } \omega, \omega^{\prime} \in \Omega
$$

The following properties of \mathcal{C}_{g} can be found in the book [8].
(1) Monotonicity: If $\xi \geqslant \eta$, then $\mathcal{C}_{g}[\xi] \geqslant \mathcal{C}_{g}[\eta]$.
(2) Positive homogeneity: If $\lambda \geqslant 0$, then $\mathcal{C}_{g}[\lambda \xi]=\lambda \mathcal{C}_{g}[\xi]$.
(3) Translation invariance: If $c \in \mathbb{R}$, then $\mathcal{C}_{g}[\xi+c]=\mathcal{C}_{g}[\xi]+c$.
(4) Comonotonic additivity: If ξ and η are comonotonic, then $\mathcal{C}_{g}[\xi+\eta]=\mathcal{C}_{g}[\xi]+\mathcal{C}_{g}[\eta]$.

3. Main result

Now we give the main result:
Theorem 3.1. Suppose g satisfies (H1)-(H3). Then the g-expectation can be represented as the Choquet expectation if and only if the g-expectation is the classical linear expectation.

Remark 1. For the case $d=1$, the above theorem is the main result in Chen et al. [2].

For proving this theorem, we need the following lemma, which is a direct consequence of Theorem 4.7 in [13]. We always use the notation $W_{t}=\left(W_{t}^{1}, \ldots, W_{t}^{d}\right)$.

Lemma 3.2. Suppose that $d=2$ and g satisfies (H1)-(H3). Then for each $a, b, \lambda \in \mathbb{R}$, we have

$$
\mathcal{E}_{g}\left[I_{\left[W_{T}^{1} \geqslant a\right]}+\lambda I_{\left[W_{T}^{2} \geqslant b\right]} \mid \mathcal{F}_{t}\right]=\left.\mathcal{E}_{g}\left[I_{\left[W_{T}^{1}-W_{t}^{1} \geqslant a-x\right]}+\lambda I_{\left[W_{T}^{2}-W_{t}^{2} \geqslant b-y\right]}\right]\right|_{(x, y)=\left(W_{t}^{1}, W_{t}^{2}\right)} .
$$

Sketch of proof of Theorem 3.1. The sufficient condition is obvious. We now prove the necessary condition. For simplicity, we only prove the case $d=2$ (see [10] for general case). It follows from $\mathcal{E}_{g}=\mathcal{C}_{g}$ and the properties of translation invariance and positive homogeneity of \mathcal{C}_{g} that

$$
\mathcal{E}_{g}[\xi+c]=\mathcal{E}_{g}[\xi]+c \quad \text { for each } c \in \mathbb{R} ; \quad \mathcal{E}_{g}[\lambda \xi]=\lambda \mathcal{E}_{g}[\xi] \quad \text { for each } \lambda \geqslant 0
$$

Thus, by Theorems 3.1 and 3.4 in Jiang [11] (see also [1] and [2]), we obtain that g is independent of y and $g(t, \lambda z)=$ $\lambda g(t, z)$ for each $\lambda \geqslant 0$. On the other hand, note that $(1-\lambda) I_{\left[W_{T}^{1}-W_{t}^{1} \geqslant a\right]}$ and $\lambda\left(I_{\left[W_{T}^{1}-W_{t}^{1} \geqslant a\right]}+I_{\left[W_{T}^{2}-W_{t}^{2} \geqslant b\right]}\right)$ are comonotonic
for each $\lambda \in(0,1), a, b \in \mathbb{R}$, then, by Lemma 3.2 and the comonotonic additivity of \mathcal{C}_{g}, we get the following key relation: for each $\lambda \in(0,1), t \in[0, T], n \in \mathbb{N}$,

$$
\begin{equation*}
\mathcal{E}_{g}\left[I_{\left[W_{T}^{1} \geqslant n\right]}+\lambda I_{\left[W_{T}^{2} \geqslant 0\right]} \mid \mathcal{F}_{t}\right]=\lambda \mathcal{E}_{g}\left[I_{\left[W_{T}^{1} \geqslant n\right]}+I_{\left[W_{T}^{2} \geqslant 0\right]} \mid \mathcal{F}_{t}\right]+(1-\lambda) \mathcal{E}_{g}\left[I_{\left[W_{T}^{1} \geqslant n\right]} \mid \mathcal{F}_{t}\right] . \tag{2}
\end{equation*}
$$

Let $\left(y_{t}^{\lambda, n}, z_{t}^{\lambda, n}\right)_{t \in[0, T]},\left(\tilde{y}_{t}^{n}, \tilde{z}_{t}^{n}\right)_{t \in[0, T]}$ and $\left(\hat{y}_{t}^{n}, \hat{z}_{t}^{n}\right)_{t \in[0, T]}$ be the solutions of BSDE (1) corresponding to the terminal values $I_{\left[W_{T}^{1} \geqslant n\right]}+\lambda I_{\left[W_{T}^{2} \geqslant 0\right]}, I_{\left[W_{T}^{1} \geqslant n\right]}+I_{\left[W_{T}^{2} \geqslant 0\right]}$ and $I_{\left[W_{T}^{1} \geqslant n\right]}$, respectively. By (2), we have $y_{t}^{\lambda, n}=\lambda \tilde{y}_{t}^{n}+(1-\lambda) \hat{y}_{t}^{n}$. From this and g is independent of y, we deduce that for each $\lambda \in(0,1)$,

$$
\mathrm{d} P \times \mathrm{d} t-\text { a.s., } \quad g\left(t, \lambda \tilde{z}_{t}^{n}+(1-\lambda) \hat{z}_{t}^{n}\right)=\lambda g\left(t, \tilde{z}_{t}^{n}\right)+(1-\lambda) g\left(t, \hat{z}_{t}^{n}\right)
$$

Since $\lambda \in(0,1)$ is arbitrary and g is positively homogeneous in z, we conclude that for each $l \geqslant 0$,

$$
\begin{equation*}
\mathrm{d} P \times \mathrm{d} t-\text { a.s., } \quad g\left(t, \tilde{z}_{t}^{n}+l \hat{z}_{t}^{n}\right)=g\left(t, \tilde{z}_{t}^{n}\right)+g\left(t, l \hat{z}_{t}^{n}\right) \tag{3}
\end{equation*}
$$

It follows from Theorem 1 in [2] that $g\left(t, z_{1}, 0\right)=g(t, 1,0) z_{1}$ for each $z_{1} \in \mathbb{R}, t \in[0, T]$. Then we have

$$
\begin{equation*}
\mathrm{d} P \times \mathrm{d} t-\text { a.s., } \quad \hat{z}_{t}^{n}=\left(\frac{1}{\sqrt{2 \pi(T-t)}} \exp \left(-\frac{\left(n-W_{t}^{1}-\int_{t}^{T} g(s, 1,0) \mathrm{d} s\right)^{2}}{2(T-t)}\right), 0\right) \tag{4}
\end{equation*}
$$

Combining (3) with (4), we obtain that for each $p \geqslant 0$,

$$
\begin{equation*}
\mathrm{d} P \times \mathrm{d} t-\text { a.s. }, \quad g\left(t, \tilde{z}_{t}^{n}+(p, 0)\right)=g\left(t, \tilde{z}_{t}^{n}\right)+g(t, p, 0) \tag{5}
\end{equation*}
$$

Let $\left(\bar{y}_{t}, \bar{z}_{t}\right)_{t \in[0, T]}$ be the solution of BSDE (1) corresponding to the terminal value $I_{\left[W_{T}^{2} \geqslant 0\right]}$. Noting that $I_{\left[W_{T}^{1} \geqslant n\right]}+I_{\left[W_{T}^{2} \geqslant 0\right]} \rightarrow$ $I_{\left[W_{T}^{2} \geqslant 0\right]}$ in $L^{2}\left(\mathcal{F}_{T}\right)$, by Theorem 2.3 in [13] (see also [1] and [9]), we have $\left(\tilde{z}_{t}^{n}\right)_{t \in[0, T]} \rightarrow\left(\bar{z}_{t}\right)_{t \in[0, T]}$ in $L^{2}\left(0, T\right.$; $\left.\mathbb{R}^{2}\right)$. Since g satisfies Lipschitz assumption (H1), we get for each $p \geqslant 0$,

$$
g\left(t, \tilde{z}_{t}^{n}+(p, 0)\right) \rightarrow g\left(t, \bar{z}_{t}+(p, 0)\right) \quad \text { in } L^{2}(0, T ; \mathbb{R})
$$

This with (5) implies that for each $p \geqslant 0$,

$$
\begin{equation*}
\mathrm{d} P \times \mathrm{d} t-\text { a.s., } \quad g\left(t, \bar{z}_{t}+(p, 0)\right)=g\left(t, \bar{z}_{t}\right)+g(t, p, 0) \tag{6}
\end{equation*}
$$

Also, by $g\left(t, 0, z_{2}\right)=g(t, 0,1) z_{2}$, we have

$$
\begin{equation*}
\mathrm{d} P \times \mathrm{d} t-\text { a.s., } \quad \bar{z}_{t}=\left(0, \frac{1}{\sqrt{2 \pi(T-t)}} \exp \left(-\frac{\left(W_{t}^{2}+\int_{t}^{T} g(s, 0,1) \mathrm{d} s\right)^{2}}{2(T-t)}\right)\right) \tag{7}
\end{equation*}
$$

Thus, by (6), (7) and $g(t, \lambda z)=\lambda g(t, z)$ for each $\lambda \geqslant 0$, we obtain that for each $z_{1} \geqslant 0, z_{2} \geqslant 0$,

$$
\begin{equation*}
g\left(t, z_{1}, z_{2}\right)=g(t, 1,0) z_{1}+g(t, 0,1) z_{2} \tag{8}
\end{equation*}
$$

Similarly, we can obtain (8) for each $\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$. Then by the Girsanov Theorem, \mathcal{E}_{g} is the classical linear expectation. The proof is completed.

Remark 2. The key relation (2) is not trivial. Because the comonotonic additivity of g-expectation does not imply the comonotonic additivity of conditional g-expectation, which is discussed in detail in [2]. Moreover, our method also holds without the continuous assumption (H3) on g (see [10]).

Remark 3. In [7], the authors showed that a class of dynamically consistent nonlinear expectations must be g-expectations. So, our result also indicates that Choquet expectations cannot be dynamically consistent in the sense in [7].

Acknowledgements

The author would like to thank Professors S. Peng and Z. Chen for their help and comments. The author would also like to thank the anonymous referee for a careful reading of the paper and his/her suggestions.

References

[1] P. Briand, F. Coquet, Y. Hu, J. Mémin, S. Peng, A converse comparison theorem for BSDEs and related properties of g-expectation, Electronic Communications in Probability 5 (2000) 101-117.
[2] Z. Chen, T. Chen, M. Davison, Choquet expectation and Peng's g-expectation, The Annals of Probability 33 (3) (2005) 1179-1199.
[3] Z. Chen, L. Epstein, Ambiguity, risk and asset returns in continuous time, Econometrica 70 (2002) 1403-1443.
[4] Z. Chen, R. Kulperger, Minimax pricing and Choquet pricing, Insurance: Mathematics and Economics 38 (2006) 518-528.
[5] Z. Chen, A. Sulem, An integral representation theorem of g-expectations, Research Report INRIA 4284 (2001) 1-20.
[6] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953) 131-195.
[7] F. Coquet, Y. Hu, J. Mémin, S. Peng, Filtration consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields 123 (2002) 1-27.
[8] D. Denneberg, Non-additive Measure and Integral, Kluwer Academic Publishers, Boston, 1994.
[9] N. El Karoui, S. Peng, M.C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance 7 (1997) 1-71.
[10] M. Hu, Choquet expectations and g-expectations with multi-dimensional Brownian motion, available via http://arxiv.org/abs/0910.2519, 2009.
[11] L. Jiang, Convexity, translation invariance and subadditivity for g-expectations and related risk measures, Annals of Applied Probability 18 (1) (2008) 245-258.
[12] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, Systems and Control Letters 14 (1990) 55-61.
[13] S. Peng, BSDE and stochastic optimizations, topics in stochastic analysis, in: J. Yan, S. Peng, S. Fang, L.M. Wu (Eds.), Lecture Notes of 1995 Summer School in Mathematics, Science Press, Beijing, 1997, Ch. 2 (Chinese vers.).
[14] S. Peng, Backward SDE related g-expectations, Backward stochastic differential equations, in: N. El Karoui, L. Mazliak (Eds.), Pitman Research Notes in Mathematics Series, vol. 364, Longman, Harlow, 1997, pp. 141-159.

[^0]: E-mail address: humingshang@gmail.com.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.04.008

