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Dans cette Note, nous donnons une condition nécessaire et suffisante sur g déterministe
sous laquelle les g-espérances peut étre représentée par les espérances de Choquet.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Peng [14] introduced the notions of g-expectations and conditional g-expectations via a class of backward stochastic
differential equations (BSDEs), and showed that g-expectations are dynamically consistent nonlinear expectations. Since
then, many researchers have been investigating the properties of g-expectations and their connection with other fields
(see [1-5,7,9-14] and the references therein). In [2] and [5], Chen et al. studied an integral representation problem: if a
g-expectation can be represented as a Choquet expectation, can we find the form of the generator g? For 1-dimensional
Brownian motion case, they gave a necessary and sufficient condition on g. But their method cannot be used for multi-
dimensional case. In this Note, we give a more simple and direct method to deal with this problem, especially for multi-
dimensional case.

2. Preliminaries

Let (W¢)i>0 be a d-dimensional standard Brownian motion defined on a completed probability space (§2,F, P) and
(Fo)e>o0 be the natural filtration generated by this Brownian motion. Fix T > 0. We denote by L%>(Fp), t €0, T], the set of
all square integrable F;-measurable random variables and L2(0, T; R") the space of all progressively measurable, R"-valued

processes (Ve)teo, 7] With EfOT [ve]? dt < oo
In this Note, we consider a deterministic function g: [0, T] x R x R? — R such that t > g(t, y, z) is measurable for each
(y,2) € R x RY. For the function g, we will use the following assumptions:

(H1) There exists a constant K > 0 such that

lgt.y. 2 —g(t.y.2)|<K(ly-y|+|z-7|), Vt.y.y.z7.
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(H2) g(t,y,0)=0 for all (t,y) €[0,T] x R.
(H3) For each (y,z) e R x RY, £ g(t, y, z) is continuous.

Under the assumptions (H1) and (H2), Pardoux and Peng [12] showed that for each & € L2(Fr), the BSDE
T T

yr=$+/g(s,y5,zs)d5—/zs-dWs, te[0,T], (1)

t t
has a unique solution (y¢, Zt)tejo, 1] € L2(0, T; R'*9). Using the solution of BSDE (1), Peng [14] proposed the following
notions:
Definition 2.1. Suppose g satisfies (H1) and (H2). For each & € L(Fy), let (y¢, Zt)te[o, 7] be the solution of BSDE (1), define
Eglé | Ftl:=y: fortel0,T].
EglE | Ft] is called the conditional g-expectation of & with respect to F¢. In particular, if t =0, we write £[£] which is
called the g-expectation of &.
Let g satisfy (H1) and (H2). The g-probability Pg(-) is defined by
Pg(A):=Eg[la] forall Ae Fr.

The related Choquet expectation (see [6]) is denoted by Cg, i.e.,

0 00
Cglé]= /[Pg(g>r)—1]dt+/13g(g >t)dt for & € L(Fr).
—00 0

Two random variables & and 1 are called comonotonic if
[£(@) — &(0)][n(@) —n(w')] >0 foreachw, ' € R2.

The following properties of Cg can be found in the book [8].

(1) Monotonicity: If & > n, then Cg[&] > Cq[n].

(2) Positive homogeneity: If A > 0, then Cg[A£] = ACg[£].

(3) Translation invariance: If c € R, then Cg[£ + c] =Cg[£] +cC.

(4) Comonotonic additivity: If & and 7 are comonotonic, then Cg[§ + 1] = Cg[£] + Celn].

3. Main result

Now we give the main result:

Theorem 3.1. Suppose g satisfies (H1)-(H3). Then the g-expectation can be represented as the Choquet expectation if and only if the
g-expectation is the classical linear expectation.

Remark 1. For the case d =1, the above theorem is the main result in Chen et al. [2].

For proving this theorem, we need the following lemma, which is a direct consequence of Theorem 4.7 in [13]. We
always use the notation W, = (W, ..., W9).

Lemma 3.2. Suppose that d = 2 and g satisfies (H1)—-(H3). Then for each a, b, A € R, we have
Eelliwlza ¥ Miwzzp | Fed = Eglliwi _wiza—x + Hiwz-wizzp-yllwy=wi wdy:

Sketch of proof of Theorem 3.1. The sufficient condition is obvious. We now prove the necessary condition. For simplicity,
we only prove the case d =2 (see [10] for general case). It follows from £; = C; and the properties of translation invariance
and positive homogeneity of Cg that

Eglé +cl=E[E]+c foreachceR; Eg[AE]1=1Eg[E] foreach i > 0.

Thus, by Theorems 3.1 and 3.4 in Jiang [11] (see also [1] and [2]), we obtain that g is independent of y and g(t,Az) =
Lg(t, z) for each A > 0. On the other hand, note that (1 — A)I[W}fwg >a] and A(I[W}fwg%] + I[W%7W[2>b]) are comonotonic
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for each A € (0,1), a, b € R, then, by Lemma 3.2 and the comonotonic additivity of Cg, we get the following key relation:
foreach A €(0,1),t€[0,T], neN,

Sg[l[w;%] + M[W%>O] | Fel= Agg[’[w}gn] + I[W%>0] | Fel+ (1 — A)Sg[l[w}%] | Ftl. (2)
Let (y?’",z?‘")te[o,r], 1, ZDeero.r) and (I, ZMeefo, 1) be the solutions of BSDE (1) corresponding to the terminal values

Twism +Mw2sop Twlsm + w2 o and lwisny respectively. By (2), we have y;" = Aj" 4 (1 —A)§™. From this and g is
independent of y, we deduce that for each 1 € (0, 1),

dP xdt —as., g(t,AZ] + (1 —0Z)=ag(t,z]) + 1 —ng(t. 2}).
Since A € (0, 1) is arbitrary and g is positively homogeneous in z, we conclude that for each [ >0,

dP x dt —as., g(t,zf +127) = g(t. 2}) + g(t.12}). (3)
It follows from Theorem 1 in [2] that g(t, z1, 0) = g(t, 1,0)z; for each z1 € R, t € [0, T]. Then we have

R 1 n—wl— [T g(s,1,0)ds)?
dP x dt —as., 2= exp| — L Jt )O) 4
t (Jzn(r—t) p( 2(T —t) )
Combining (3) with (4), we obtain that for each p >0,
dP xdt —as., g(t.z} +(p.0) =g(t.Z]) + g(t. p.0). (5)

Let (¥t, Zt)teo,1] be the solution of BSDE (1) corresponding to the terminal value I[W%>0]. Noting that I[an] + I[W%20] —
liw2so) in L2(Fr), by Theorem 2.3 in [13] (see also [1] and [9]), we have (ZM)tcjo.T] = Zt)eejo.1) in L2(0, T; R?). Since g
satisfies Lipschitz assumption (H1), we get for each p > 0,

g(t. 2+ (p,0)) - g(t.z: + (p.0)) inL*(0,T;R).
This with (5) implies that for each p >0,

dP x dt —as., g(t,z + (p.0)) = g(t. z) + g(t, p, 0). (6)
Also, by g(t,0,z) = g(t,0, 1)z, we have

. 1 W2+ [T g(s,0,1)ds)?
dP x dt —a.s., zr= <0, 4exp<—( L ft &( )ds) )) (7)
V2 (T —t) 2(T —t)
Thus, by (6), (7) and g(t, Az) = Ag(t, z) for each A > 0, we obtain that for each z; >0, z; >0,
g(t,z1,22) = g(t,1,0)z1 4 g(t, 0, Dz3. (8)

Similarly, we can obtain (8) for each (z1, z2) € R2. Then by the Girsanov Theorem, &g is the classical linear expectation. The
proof is completed. O

Remark 2. The key relation (2) is not trivial. Because the comonotonic additivity of g-expectation does not imply the
comonotonic additivity of conditional g-expectation, which is discussed in detail in [2]. Moreover, our method also holds
without the continuous assumption (H3) on g (see [10]).

Remark 3. In [7], the authors showed that a class of dynamically consistent nonlinear expectations must be g-expectations.
So, our result also indicates that Choquet expectations cannot be dynamically consistent in the sense in [7].
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