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The automorphic cohomology of a reductive Q-group G captures essential analytic aspects
of the arithmetic subgroups of G . The subspace spanned by all possible residues and
principal values of derivatives of Eisenstein series, attached to cuspidal automorphic
forms π on the Levi factor of proper parabolic Q-subgroups of G , forms the Eisenstein
cohomology. We show that non-trivial classes can only arise if the point of evaluation
features a “half-integral” property. Consequently, only the analytic behavior of the
automorphic L-functions at half-integral arguments matters whether an Eisenstein series
attached to a globally generic π gives rise to a residual class or not.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La cohomologie automorphe d’un Q-groupe réductif G détecte des propriétés analytiques
essentielles des sous-groupes arithmétiques de G . La cohomologie d’Eisenstein est le sous-
espace engendré par tous les résidus ainsi que par les valeurs principales des dérivées
des séries d’Eisenstein, attachées aux formes automorphes cuspidales π sur les facteurs
de Levi des Q-sous-groupes paraboliques propres de G . Nous montrons que les classes non
triviales ne peuvent provenir que des évaluations aux points « demi-entiers ». Ainsi, savoir si
une série d’Eisenstein attachée à une forme π générique donne lieu à une classe résiduelle
ou non, ne dépend que du comportement analytique de fonctions L automorphes en des
points demi-entiers.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Eisenstein cohomology of arithmetic groups

Let G be a connected reductive algebraic group defined over Q. Let Qv be the completion of Q at a place v of Q. Let A

be the ring of adèles of Q, and A f the finite adèles. We fix a choice of a minimal parabolic Q-subgroup P0 of G with Levi
decomposition P0 = L0N0, and a choice of a maximal compact subgroup K = ∏

v K v of G(A) such that K is in good position
with respect to P0 (cf. [6, Sect. I.1.4]). Here K v is a maximal compact subgroup of G(Qv ), and we write KR for K v at the
archimedean place v = ∞ of Q. Let MG be the connected component of the intersection of the kernels of all Q-rational
characters of G , and mG its Lie algebra. Let AG be a maximal Q-split torus in the center of G .
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Let E be a finite-dimensional irreducible representation of G(C) of highest weight Λ. Let J E be the annihilator of the
dual representation of E in the center of the universal enveloping algebra of mG . Let A E be the space of automorphic forms
on AG(R)◦G(Q)\G(A) (cf. [6,1]) annihilated by a power of J E . It carries the structure of an (mG , KR, G(A f ))-module. The
automorphic cohomology of G with coefficients in E is defined as the Lie algebra cohomology

H∗(G, E) = H∗(mG , KR; A E ⊗ E).

As proved in [2, Thm. 1.4, resp. 2.3], this cohomology decomposes according to the decomposition of the space of auto-
morphic forms with respect to their cuspidal support. More precisely, let C be the set of associate classes of parabolic
Q-subgroups of G , and, given a class {P } ∈ C , represented by a parabolic Q-subgroup P with Levi decomposition P = L P N P ,
let ΦE,{P } be the set of associate classes φ = {φQ }Q ∈{P } of cuspidal automorphic representations of the Levi factors of
Q ∈ {P } as in [2, Sect. 1.2]. Let A E,{P },φ be the subspace of A E consisting of automorphic forms whose constant term along
a parabolic Q-subgroup Q of G is orthogonal to the space of cuspidal automorphic forms on L Q (A) if Q /∈ {P }, and belongs
to the φQ -isotypic component of that space if Q ∈ {P }. Then

H∗(G, E) =
⊕

{P }∈C

⊕

φ∈ΦE,{P }
H∗(mG , KR; A E,{P },φ ⊗ E).

For {P } �= {G}, the cohomology classes in a summand H∗(mG , KR; A E,{P },φ ⊗ E) are constructed from the residues or prin-
cipal values of the derivatives of Eisenstein series attached to a cuspidal automorphic representation π of L P (A) belonging
to an associate class φ ∈ ΦE,{P } . Thus, the family of these summands is called the Eisenstein cohomology. We assume, as we
may, that π is normalized in such a way that the poles of the Eisenstein series attached to π are real.

As proved in [5, Sect. 3], from the representation theoretic point of view, the study of a summand in the above decom-
position of the automorphic cohomology, reduces to the study of the induced representation

Ind
G(A f )

P (A f )
H∗(p, KR ∩ P (R); Vπ ⊗ H∗(nP , E) ⊗ S

(
ǎG

P

))
,

where p, nP are the Lie algebras of P and N P , Vπ is the π -isotypic subspace of the space of cuspidal automorphic forms
on L P (A), and S(ǎG

P ) is the symmetric algebra of ǎG
P endowed with the (mG , KR)-module structure as in [1, p. 218]. Here

ǎG
P is the dual of aP ∩ mG , where aP is the Lie algebra of the maximal split torus A P in the center of L P .

2. Necessary conditions for non-vanishing

The necessary conditions for non-vanishing of cohomology classes are given in terms of the absolute root system of G .
Hence, for simplicity of exposition, we assume from this point on that G is Q-split. Let Ψ be the absolute root system
of G with respect to L0, Ψ + and Δ the positive and simple roots determined by P0. Let ρP0 be the half-sum of positive
roots. Let W be the absolute Weyl group of G . Let P be a standard (i.e. containing P0) proper parabolic Q-subgroup of G ,
with Levi decomposition P = L P N P . Let W P be the set of minimal coset representatives for W L P \W (cf. [3]), where W L P

is the absolute Weyl group of L P . For w ∈ W P , let Fμw be a representation of the Levi factor L P (C) of highest weight
μw = w(Λ+ρP0 )−ρP0 . Let ǎP = X∗(P )⊗ R, where X∗(P ) denotes the group of Q-rational characters of P . Representation
theoretical arguments show

Proposition 2.1. The space H∗(mG , KR; A E,{P },φ ⊗C E) is trivial except possibly if there exists a representative w ∈ W P such that
Fμw is isomorphic to its complex conjugate contragredient representation F ∗

μw
, and so that for any π ∈ φ the infinitesimal characters

of its infinite component π∞ and F ∗
μw

coincide.

Proposition 2.2. (See Thm. 4.11 in [7].) If the two necessary conditions in Proposition 2.1 are satisfied for certain w ∈ W P , then
the only possibly non-trivial cohomology classes are those obtained from the residues or the principal values of the derivatives of the
Eisenstein series attached to π as in [4] or [6, Sect. II.1.5] at the value sw = (−w(Λ + ρP0))|ǎP

of its complex parameter.

3. Evaluation points and automorphic L-functions at half-integral arguments

We retain the assumption that G is Q-split, and restrict our attention to classical groups. More precisely, G is the Q-
split general linear group GLn (n > 1), the symplectic group Spn , the odd special orthogonal group SO2n+1, or the even
special orthogonal group SO2n (n > 1). Let ek ∈ ǎP0 , for k = 1, . . . ,n, be the projection of L0 to its kth component. The
standard parabolic Q-subgroups of G are in bijection with the subsets of the set Δ of simple roots. Let 1 � R1 < · · · <

Rd � n be integers, and Rd = n if G = GLn . Let P be a standard parabolic Q-subgroup of G corresponding to ΘP = Δ \
{αR1 , . . . ,αRd }, where αR is the Rth root in the standard ordering of simple roots, except in the case G = GLn where
ΘP = Δ \ {αR1 , . . . ,αRd−1 }. For simplicity of exposition, if G = SO2n we exclude the case Rd = n − 1. Let π be a cuspidal
automorphic representation of L P (A) belonging to an associate class φ ∈ ΦE,{P } .
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Theorem 3.1. Let sw = −w(Λ + ρP0 )|ǎP
be the evaluation point written in the basis {e1, . . . , en} for ǎP0 as

sw = t1

R1∑

l1=1

el1 + t2

R2∑

l2=R1+1

el2 + · · · + td

Rd∑

ld=Rd−1+1

eld ,

where t1, . . . , td ∈ R. Then the residue or a derivative of the Eisenstein series attached to π , evaluated at sw , can possibly give rise to a
non-trivial cohomology class in the space H∗(mG , KR; A E,{P },φ ⊗ E) only if sw has the property that tl ∈ 1

2 Z for l = 1, . . . ,d, except

in the case G = GLn where we have tk − tl ∈ 1
2 Z for 1 � k < l � d.

The main technical tool in the proof is a combinatorial description of the sets W P for classical groups which enables us
to give explicit formulas for the action of w ∈ W P on ǎP0 . The divisibility properties of the coefficients of the evaluation
point sw = −w(Λ + ρP0 )|ǎP

can be controlled using the explicit formula for the action of w ∈ W P and the necessary
condition F ∗

μw
∼= Fμw in Proposition 2.1.

This theorem shows that for computing Eisenstein cohomology one only needs to consider the Eisenstein series at
evaluation points of a very special form. In particular, if π is globally generic, the Langlands–Shahidi method relates the
poles of the Eisenstein series attached to π to the analytic properties of certain automorphic L-functions. The point of
evaluation sw occurs in the arguments of those L-functions as kβ 〈sw , β∨〉, where β ∈ Ψ +

red(G, A P ) ranges over the positive
roots in the reduced root system of G with respect to A P , and either kβ = 1 or kβ ∈ {1,2} depending on β . Therefore, in all
cases 〈sw , β∨〉 ∈ 1

2 Z. Note that for different β , different L-functions appear. Moreover, if the symmetric or exterior square
L-function appears with kβ = 1, then Rd = n, and either G = SO2n+1 with β of the form β = eRk , or G = SO2n with β of
the form β = eRk−1 + eRk and Rk − Rk−1 � 2. Thus, in these two cases, in fact, 〈sw , β∨〉 = 2tk ∈ Z. Although the analytic
properties of all the L-functions in the Langlands–Shahidi normalizing factors are not completely understood (e.g. the poles
inside 0 < s < 1 for the symmetric and exterior square L-functions), it turns out, due to Theorem 3.1, that they are known
at the evaluation points which are relevant for cohomology. We discuss an example in the next section.

4. An example: maximal parabolic subgroups of the symplectic group

We consider the Q-split symplectic group Spn of Q-rank n � 2. The highest weight Λ of the representation E of Spn(C)

is of the form Λ = ∑n
k=1 λkek , where all λk ∈ Z and λ1 � λ2 � · · · � λn � 0. Let Pn = Ln Nn be the standard maximal proper

parabolic Q-subgroup of Spn with the Levi factor Ln ∼= GLn . Let π be a cuspidal automorphic representation of Ln(A) in an
associate class φ ∈ ΦE,{Pn} .

Theorem 4.1. Let L E,{Pn},φ be the subspace of A E,{Pn},φ consisting of square-integrable automorphic forms. The cohomology space
H∗(spn, KR; L E,{Pn},φ ⊗ E) is trivial except possibly in the case where the following conditions are satisfied:

(i) the representation π is selfdual, L(s,π,∧2) has a pole at s = 1, and L(1/2,π) �= 0,
(ii) the Q-rank n of the algebraic group Spn/Q is even,

(iii) the highest weight Λ of E satisfies λ2l−1 = λ2l for all l = 1,2, . . . ,n/2,
(iv) the infinite component π∞ of π is a tempered representation of GLn(R) fully induced from n/2 unitary discrete series represen-

tations of GL2(R) having the lowest O (2)-types 2μl + 2n − 4l + 4 for l = 1, . . . ,n/2, where μl = λ2l−1 = λ2l .

Square-integrable automorphic forms in L E,{Pn},φ are obtained as residues of Eisenstein series attached to π at the poles
inside the open positive Weyl chamber in ǎPn . Since all cuspidal automorphic representations of GLn(A) are globally generic,
the Langlands–Shahidi method implies that those poles coincide with the poles of the normalizing factor

L(s,π)

L(1 + s,π)ε(s,π)

L(2s,π,∧2)

L(1 + 2s,π,∧2)ε(2s,π,∧2)
,

where s > 0 is identified with the character dets ∈ ǎPn . The poles of that ratio at s > 0 are among the poles of L(2s,π,∧2).
However, this L-function has no poles for 2s > 1, it has a simple pole at 2s = 1 for π as in Theorem 4.1(i), but its analytic
behavior inside the critical strip 0 < 2s < 1 is not known. At this point the strength of Theorem 3.1 reveals, because it shows
that possible poles inside 0 < 2s < 1 play no role in understanding the cohomology space H∗(spn, KR; A E,{Pn},φ ⊗ E). The
rest of the theorem follows from the explicit formulas for the action of w ∈ W Pn , Propositions 2.1 and 2.2, and sw = 1/2.

A treatment of the other maximal proper parabolic subgroups Pr , with the Levi factor Lr ∼= GLr × Spn−r where r < n, is
also carried through. In that case, given a globally generic π ∼= τ ⊗σ , the analytic behavior of the exterior square L-function
L(2s, τ ,∧2) at s = 1/2, and the Rankin–Selberg L-function L(s, τ × σ) at s = 1, plays a decisive role.
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