Harmonic Analysis/Analytic Geometry

Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $|\log \epsilon|^{-c}$

Une estimation de la probabilité pour l'aiguille de Buffon de se situer dans un ϵ-voisinage de l'ensemble de Sierpinski

Matthew Bond ${ }^{\text {a }}$, Alexander Volberg ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
${ }^{\text {b }}$ School of Mathematics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK

A R T I C L E IN F O

Article history:

Received 12 December 2009
Accepted after revision 12 March 2010
Presented by Gilles Pisier

Abstract

In recent years, relatively sharp quantitative results in the spirit of the Besicovitch projection theorem have been obtained for self-similar sets by studying the L^{p} norms of the "projection multiplicity" functions, f_{θ}, where $f_{\theta}(x)$ is the number of connected components of the partial fractal set that orthogonally project in the θ direction to cover x. In Nazarov et al. (2008) [4], it was shown that n-th partial 4-corner Cantor set with selfsimilar scaling factor $1 / 4$ decays in Favard length at least as fast as $\frac{C}{n^{p}}$, for $p<1 / 6$. In Bond and Volberg (2009) [1], this same estimate was proved for the 1-dimensional Sierpinski gasket for some $p>0$. A few observations were needed to adapt the approach of Nazarov et al. (2008) [4] to the gasket: we sketch them here. We also formulate a result about all self-similar sets of dimension 1. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

On donne une estimation de la probabilité pour que l'aiguille de Buffon soit ϵ-proche d'un ensemble de Cantor-Sierpinski. On trouve une majoration de cette probabilité en $|\log \epsilon|^{-c}$, où c est une constante strictement positive, cette constante n'est pas connue de mannière précise, mais l'estimation est optimale. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Definitions and result

Let $E \subset \mathbb{C}$, and let $\operatorname{proj}_{\theta}$ denote orthogonal projection onto the line having angle θ with the real axis. The average projected length or Favard length of $E, \operatorname{Fav}(E)$, is given by,

$$
\operatorname{Fav}(E)=\frac{1}{\pi} \int_{0}^{\pi}\left|\operatorname{proj}_{\theta}(E)\right| \mathrm{d} \theta
$$

[^0]For bounded sets, Favard length is also called Buffon needle probability, since up to a normalization constant, it is the likelihood that a long needle dropped with independent, uniformly distributed orientation and distance from the origin will intersect the set somewhere.

Set $B\left(z_{0}, r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. For $\alpha \in\{-1,0,1\}^{n}$, let

$$
z_{\alpha}:=\sum_{k=1}^{n}\left(\frac{1}{3}\right)^{k} e^{i \pi\left[\frac{1}{2}+\frac{2}{3} \alpha_{k}\right]}, \quad \mathcal{G}_{n}:=\bigcup_{\alpha \in\{-1,0,1\}^{n}} B\left(z_{\alpha}, 3^{-n}\right) .
$$

This set is our approximation of a partial Sierpinski gasket; it is strictly larger. We may still speak of the approximating discs as "Sierpinski triangles."

The main result is:
Theorem 1.1. $\operatorname{Fav}\left(\mathcal{G}_{n}\right) \leqslant \frac{C}{n^{1 / 14}}$.
The set \mathcal{G}_{n} is a 3^{-n} approximation to the Besicovitch irregular set (see [2] for definition) called Sierpinski gasket. Recently one detects a considerable interest in estimating the Favard length of such ϵ-neighborhoods of Besicovitch irregular sets, see $\left[5,6,4,3\right.$]. In [5] a random model of such Cantor set is considered and the estimate $\lesssim \frac{1}{n}$ infinitely often, almost surely is proved. But for non-random self-similar sets the estimates of [5] are more in terms of $\frac{1}{\log \ldots \log n}$ (number of logarithms depending on n) and more suitable for general class of "quantitatively Besicovitch irregular sets" treated in [6].

Let $f_{n, \theta}:=\frac{1}{2} v_{n} * 3^{n} \chi_{\left[-3^{-n}, 3^{-n}\right]}$, where

$$
v_{n}:=*_{k=1}^{n} \widetilde{v}_{k} \quad \text { and } \quad \tilde{v}_{k}:=\frac{1}{3}\left[\delta_{3-k} \cos (\pi / 2-\theta)+\delta_{3-k} \cos (-\pi / 6-\theta)+\delta_{3-k} \cos (7 \pi / 6-\theta)\right] .
$$

For $K>0$, let $A_{K}:=A_{K, n, \theta}:=\left\{x: f_{n, \theta} \geqslant K\right\}$. Let $\mathcal{L}_{\theta, n}:=\operatorname{proj}_{\theta}\left(\mathcal{G}_{n}\right)$. Notice that $\mathcal{L}_{\theta, n}=A_{1, n, \theta}$. For our result, some maximal versions of these are needed:

$$
f_{N, \theta}^{*}:=\max _{n \leqslant N} f_{n, \theta}, \quad A_{K}^{*}:=A_{K, n, \theta}^{*}:=\left\{x: f_{n, \theta}^{*} \geqslant K\right\} .
$$

Also, let $E:=E_{N}:=\left\{\theta:\left|A_{K}^{*}\right| \leqslant K^{-3}\right\}$ for $K=N^{\epsilon_{0}}, \epsilon_{0}$.
Later, we will jump to the Fourier side, where the function

$$
\varphi_{\theta}(x):=\frac{1}{3}\left[e^{-i \cos (\pi / 2-\theta) x}+e^{-i \cos (-\pi / 6-\theta) x}+e^{-i \cos (7 \pi / 6-\theta) x}\right]
$$

plays the central role: set $\widehat{v_{n}}(x)=\prod_{k=1}^{n} \varphi_{\theta}\left(3^{-k} x\right)$.

2. General philosophy

Fix θ. If the mass of $f_{n, \theta}$ is concentrated on a small set, then $\left\|f_{n, \theta}\right\|_{p}$ should be large for $p>1$ - and vice versa. $1=\int f \leqslant\left\|f_{n, \theta}\right\|_{p}\left\|\chi_{\mathcal{L}_{\theta, n}}\right\|_{q}$, so $m\left(\mathcal{L}_{\theta, n}\right) \geqslant\|f\|_{p}^{-q}$, a decent estimate. The other basic estimate is not so sharp:

$$
\begin{equation*}
m\left(\mathcal{L}_{\theta, N}\right) \leqslant 1-(K-1) m\left(A_{K, N, \theta}\right) \tag{1}
\end{equation*}
$$

However, a combinatorial self-similarity argument of [4] and revisited in [1] shows that for the Favard length problem, it bootstraps well under further iterations of the similarity maps:

Theorem 2.1. If $\theta \notin E_{N}$, then $\left|\mathcal{L}_{\theta, N K^{3}}\right| \leqslant \frac{C}{K}$.
Note that the maximal version f_{N}^{*} is used here. A stack of K triangles at stage n generally accounts for more stacking per step the smaller n is. For fixed $x \in A_{K, N, \theta}^{*}$, the above theorem considers the smallest n such that $x \in A_{K, n, \theta}$, and uses self-similarity and the Hardy-Littlewood theorem to prove its claim by successively refining an estimate in the spirit of (1). Of course, now Theorem 1.1 follows from the following:

Theorem 2.2. Let $\epsilon_{0}<1 / 11$. Then for $N \gg 1,\left|E_{N}\right|<N^{-\epsilon_{0}}$.
It turns out that L^{2} theory on the Fourier side is of great use here. It is proved in $[4,1]$:
Theorem 2.3. For all $\theta \in E_{N}$ and for all $n \leqslant N,\left\|f_{n, \theta}\right\|_{L^{2}}^{2} \leqslant C K$.

One can then take small sample integrals on the Fourier side and look for lower bounds as well. Let $K=N^{\epsilon_{0}}$, and let $m=2 \epsilon_{0} \log _{3} N$. Theorem 2.3 easily implies the existence of $\tilde{E} \subset E$ such that $|\tilde{E}|>|E / 2|$ and number $n, N / 4<n<N / 2$, such that for all $\theta \in \tilde{E}$,

$$
\int_{3^{n-m}}^{3^{n}} \prod_{k=0}^{n}\left|\varphi_{\theta}\left(3^{-k} x\right)\right|^{2} \mathrm{~d} x \leqslant \frac{2 C K m}{N} \leqslant 2 \epsilon_{0} N^{\epsilon_{0}-1} \log N
$$

Number n does not depend on $\theta ; n$ can be chosen to satisfy the estimate in the average over $\theta \in E$, and then one chooses \tilde{E}. Let $I:=\left[3^{n-m}, 3^{n}\right]$.

Now the main result amounts to this (with absolute constant A large enough):

Theorem 2.4.

$$
\theta \in \tilde{E}: \quad \int_{I} \prod_{k=0}^{n}\left|\varphi_{\theta}\left(3^{-k} x\right)\right|^{2} \mathrm{~d} x \geqslant c 3^{m-2 \cdot A m}=c N^{-2 \epsilon_{0}(2 A-1)} .
$$

The result: $2 \epsilon_{0} \log N \geqslant N^{1-\epsilon_{0}(4 A-1)}$, i.e., $N \leqslant N^{*}$. Now we sketch the proof of Theorem 2.4. We split up the product into two parts: high and low-frequency: $P_{1, \theta}(z)=\prod_{k=0}^{n-m-1} \varphi_{\theta}\left(3^{-k} z\right), P_{2, \theta}(z)=\prod_{k=n-m}^{n} \varphi_{\theta}\left(3^{-k} z\right)$.

Theorem 2.5. For all $\theta \in E, \int_{I}\left|P_{1, \theta}\right|^{2} \mathrm{~d} x \geqslant C 3^{m}$.
Low frequency terms do not have as much regularity, so we must control the damage caused by the set of small values, $\operatorname{SSV}(\theta):=\left\{x \in I:\left|P_{2}(x)\right| \leqslant 3^{-\ell}\right\}, \ell=\alpha m$ with sufficiently large constant α. In the next result we claim the existence of $\mathcal{E} \subset \tilde{E},|\mathcal{E}|>|\tilde{E} / 2|$ with the following property:

Theorem 2.6.

$$
\int_{\tilde{E}} \int_{S S V(\theta)}\left|P_{1, \theta}(x)\right|^{2} \mathrm{~d} x \mathrm{~d} \theta \leqslant 3^{2 m-\ell / 2} \Rightarrow \forall \theta \in \mathcal{E}, \quad \int_{\operatorname{SSV}(\theta)}\left|P_{1, \theta}(x)\right|^{2} \mathrm{~d} x \leqslant c K 3^{2 m-\ell / 2}
$$

Then Theorems 2.5 and 2.6 give Theorem 2.4.

3. Locating the zeros of $\boldsymbol{P}_{\mathbf{2}}$

We can consider $\Phi(x, y)=1+e^{i x}+e^{i y}$. The key observations are

$$
|\Phi(x, y)|^{2} \geqslant a\left(\left|4 \cos ^{2} x-1\right|^{2}+\left|4 \cos ^{2} y-1\right|^{2}\right), \quad \frac{\sin 3 x}{\sin x}=4 \cos ^{2} x-1
$$

Changing variable we can replace $3 \varphi_{\theta}(x)$ by $\phi_{t}(x)=\Phi(x, t x)$. Consider

$$
P_{2, t}(x):=\prod_{k=n-m}^{n} \frac{1}{3} \phi_{t}\left(3^{-k} x\right), \quad P_{1, t}(x):=\prod_{k=0}^{n-m} \frac{1}{3} \phi_{t}\left(3^{-k} x\right) .
$$

We need

$$
\operatorname{SSV}(t):=\left\{x \in I:\left|P_{2, t}(x)\right| \leqslant 3^{-\ell}\right\} .
$$

One can easily imagine it if one considers

$$
\Omega:=\left\{(x, y) \in[0,2 \pi]^{2}:|\mathcal{P}(x, y)|:=\left|\prod_{k=0}^{m} \Phi\left(3^{k} x, 3^{k} y\right)\right| \leqslant 3^{m-\ell}\right\}
$$

Moreover (using that if $x \in \operatorname{SSV}(t)$ then $3^{-n} x \geqslant 3^{-m}$, and using $x \mathrm{~d} x \mathrm{~d} t=\mathrm{d} x \mathrm{~d} y$), we change variable in the next integral:

$$
\begin{aligned}
\int_{\tilde{E}} \int_{S S V(t)}\left|P_{1, t}(x)\right|^{2} \mathrm{~d} x \mathrm{~d} t & =3^{-2 n+2 m} \cdot 3^{n} \int_{\tilde{E}} \int_{3^{-n} S S V(t)}\left|\prod_{k=m}^{n} \Phi\left(3^{k} x, 3^{k} t x\right)\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
& \leqslant 3^{-n+3 m} \int_{\Omega}\left|\prod_{k=m}^{n} \Phi\left(3^{k} x, 3^{k} y\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Now notice that by our key observations

$$
\Omega \subset\left\{(x, y) \in[0,2 \pi]^{2}:\left|\sin 3^{m+1} x\right|^{2}+\left|\sin 3^{m+1} y\right|^{2} \leqslant a^{-m} 3^{2 m-2 \ell} \leqslant 3^{-\ell}\right\}
$$

The latter set \mathcal{Q} is the union of $4 \cdot 3^{2 m+2}$ squares Q of size $3^{-m-\ell / 2} \times 3^{-m-\ell / 2}$. Fix such a Q and estimate,

$$
\begin{aligned}
\int_{Q}\left|\prod_{k=m}^{n} \Phi\left(3^{k} x, 3^{k} y\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y & \leqslant\left.\left. 3^{\ell} \int_{Q}\right|_{k=m+\ell / 2} ^{n} \Phi\left(3^{k} x, 3^{k} y\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leqslant 3^{\ell} \cdot\left(3^{-m-\ell / 2}\right)^{2} \int_{[0,2 \pi]^{2}}\left|\prod_{k=0}^{n-m-\ell / 2} \Phi\left(3^{k} x, 3^{k} y\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leqslant 3^{\ell} \cdot\left(3^{-m-\ell / 2}\right)^{2} \cdot 3^{n-m-\ell / 2} \\
& =3^{-2 m} \cdot 3^{n-m-\ell / 2}
\end{aligned}
$$

Therefore, taking into account the number of squares Q in \mathcal{Q} and the previous estimates we get

$$
\int_{E S S V(t)} \int_{S,}\left|P_{1, t}(x)\right|^{2} \mathrm{~d} x \mathrm{~d} t \leqslant 3^{2 m-\ell / 2}
$$

Theorem 2.6 is proved.
To prove Theorem 2.5 we need the following simple lemma.
Lemma 3.1. Let C be large enough. Let $j=1,2, \ldots, k, c_{j} \in \mathbb{C},\left|c_{j}\right|=1$, and $\alpha_{j} \in \mathbb{R}$. Let $A:=\left\{\alpha_{j}\right\}_{j=1}^{k}$. Suppose

$$
\int_{\mathbb{R}}\left(\sum_{\alpha \in A} \chi_{[\alpha-1, \alpha+1]}(x)\right)^{2} \mathrm{~d} x \leqslant S . \quad \text { Then } \int_{0}^{1}\left|\sum_{\alpha \in A} c_{\alpha} e^{i \alpha y}\right|^{2} \mathrm{~d} y \leqslant C S
$$

Some key facts useful for its proof:

$$
\int_{0}^{1}\left|\sum_{\alpha \in A} c_{\alpha} e^{i \alpha y} \mathrm{~d} y\right|^{2} \leqslant e \int_{0}^{\infty}\left|\sum_{\alpha \in A} c_{\alpha} e^{i(\alpha+i) y} \mathrm{~d} y\right|^{2}=e \int_{\mathbb{R}}\left|\sum_{\alpha \in A} \frac{c_{\alpha}}{\alpha+i-x}\right|^{2} \mathrm{~d} x
$$

and the fact that $H^{2}\left(\mathbb{C}_{+}\right)$is orthogonal to $\overline{H^{2}\left(\mathbb{C}_{+}\right)}$, so one can pass to the Poisson kernel.

4. The general case

Let us have k closed disjoint discs of radii $1 / k$ located in the unit disc. We build k^{n} small discs of radii k^{-n} by iterating k linear maps from small discs onto the unit disc. Call the resulting union $S_{k}(n)$. We would like to show that exactly as in the case of $k=3$ considered above and in a very special case of $k=4$ considered in [4] $\operatorname{Fav}\left(S_{k}(n)\right) \leqslant C n^{-c}, c>0$. However, presently we can prove only a weaker result.

Theorem 4.1.

$$
\operatorname{Fav}\left(S_{k}(n)\right) \leqslant C e^{-c(\log n)^{1 / 2}}, \quad c>0
$$

References

[1] M. Bond, A. Volberg, The Power Law for Buffon's Needle Landing Near the Sierpinski Gasket, arXiv:0911.0233v1 [math], 2009, pp. 1-34.
[2] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, New York, 1986.
[3] I. Laba, K. Zhai, Favard length of product Cantor sets, arXiv:0902.0964v1, February 5, 2009.
[4] F. Nazarov, Y. Peres, A. Volberg, The power law for the Buffon needle probability of the four-corner Cantor set, arXiv:0801.2942, 2008, pp. 1-15.
[5] Y. Peres, B. Solomyak, How likely is Buffon's needle to fall near a planar Cantor set? Pacific J. Math. 204 (2) (2002) 473-496.
[6] T. Tao, A quantitative version of the Besicovitch projection theorem via multiscale analysis, arXiv:0706.2446v1 [math.CA], 18 June 2007, pp. 1-28.

[^0]: E-mail addresses: bondmatt@msu.edu (M. Bond), volberg@math.msu.edu (A. Volberg).
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.04.006

