
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 517–520
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Analysis

Asymptotic behavior of polynomially bounded operators

Comportement asymptotique des opérateurs polynomialement bornés

Heybetkulu S. Mustafayev

Yuzuncu Yıl University, Faculty of Arts and Sciences, Department of Mathematics, 65080, Van, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 January 2010
Accepted after revision 8 April 2010
Available online 24 April 2010

Presented by Gilles Pisier

Let T be a polynomially bounded operator on a complex Banach space and let AT be the
smallest uniformly closed (Banach) algebra that contains T and the identity operator. It is
shown that for every S ∈ AT ,

lim
n→∞

∥∥T n S
∥∥ = sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣,

where Ŝ is the Gelfand transform of S and σu(T ) := σ(T )∩Γ is the unitary spectrum of T ;
Γ = {z ∈ C: |z| = 1}.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit T un opérateur polynomialement borné sur un espace de Banach et soit AT la plus
petite algèbre de Banach uniformement fermé contenant T et l’identité. Il est montré dans
cet article que pour tout S ∈ AT ,

lim
n→∞

∥∥T n S
∥∥ = sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣,

où Ŝ est la transformée de Gelfand et σu(T ) := σ(T ) ∩ Γ est la spectre unitaire de T ;
Γ := {z ∈ C: |z| = 1}.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

Let B(X) be the algebra of all bounded, linear operators on the complex Banach space X . For T ∈ B(X), we denote
by σ(T ) the spectrum and by R(z, T ) = (z − T )−1 the resolvent of T . We have written D = {z ∈ C: |z| < 1} and Γ = {z ∈
C: |z| = 1}. By A(D) we will denote the disc-algebra and by H∞ := H∞(D), the algebra of all bounded analytic functions
on D .

Recall that the set σu(T ) := σ(T ) ∩ Γ is called unitary spectrum of T ∈ B(X). If T ∈ B(X), we let AT denote the closure
in the uniform operator topology of all polynomials in T . Then, AT is a commutative unital Banach algebra. The maximal
ideal space of AT can be identified with σAT (T ), the spectrum of T with respect to the algebra AT [4, Theorem 4.5.1]. By
Ŝ we will denote the Gelfand transform of S ∈ AT . Since σ(T ) ⊂ σAT (T ), for every ξ ∈ σ(T ) there exists a multiplicative
functional φξ on AT such that φξ (T ) = ξ . Here, and in the sequel, instead of Ŝ(φξ ) (= φξ (S)), ξ ∈ σ(T ), we will use the
notation Ŝ(ξ). Note that ξ �→ Ŝ(ξ) is a continuous function on σ(T ).
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Recall that an operator T ∈ B(X) is said to be polynomially bounded if for all polynomials P we have∥∥P (T )
∥∥ � ‖P‖∞.

The von Neumann inequality asserts that every Hilbert space contraction is polynomially bounded. This result does not
extend to Banach space contractions. We see that every polynomially bounded operator is a contraction.

Note that every polynomially bounded operator T ∈ B(X) admits an A(D)-functional calculus. This means that there
exists a contractive algebra-homomorphism h : A(D) �→ AT (with dense range) such that 1 �→ I and z �→ T . We will use the
notation f (T ) := h( f ), f ∈ A(D). Thus we have ‖ f (T )‖ � ‖ f ‖∞ for all f ∈ A(D). We also have∥∥ f (T )

∥∥ � sup
ξ∈σ (T )

∣∣ f (ξ)
∣∣, f ∈ A(D). (1.1)

The Esterle–Strouse–Zouakia Theorem [1] asserts that if T is a contraction on a Hilbert space and f ∈ A(D) vanishes on
σu(T ), then limn→∞ ‖T n f (T )‖ = 0. The similar result holds for polynomially bounded operators [3] (for related results see
also [2,5,8,10]). We see that under the assumptions of Esterle–Strouse–Zouakia Theorem the Lebesgue measure of σu(T ) is
necessarily zero. In this note, we address the problem whether quantitative versions of the above results hold.

2. The main result

The main result of this Note is the following theorem:

Theorem 2.1. If T ∈ B(X) is a polynomially bounded operator, then for every S ∈ AT ,

lim
n→∞

∥∥T n S
∥∥ = sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣.

For the proof we need some preliminary results. Suppose that V ∈ B(X) is an invertible isometry. By AV ,V −1 we will
denote the closure in the uniform operator topology of all trigonometric polynomials in V . Then, AV ,V −1 is a commutative
unital Banach algebra. If V is polynomially bounded, then V admits C(Γ )-functional calculus (for more details see [3]), that
is, there exists a contractive algebra-homomorphism h : C(Γ ) �→ AV ,V −1 (with dense range) such that 1 �→ I , eit �→ V and
e−it �→ V −1. We will use the notation f (T ) := h( f ), f ∈ C(Γ ). Thus we have ‖ f (V )‖ � ‖ f ‖∞ for all f ∈ C(Γ ). We also
have ∥∥ f (V )

∥∥ � sup
ξ∈σ (V )

∣∣ f (ξ)
∣∣, f ∈ C(Γ ). (2.1)

Proposition 2.2. If V is a polynomially bounded isometry, then the following assertions hold:

a) If V is invertible, then the algebra AV ,V −1 (in the case when σ(V ) 	= Γ, then the algebra AV ) is isometric and algebra isomorphic
to C(σ (V ));

b) For every f ∈ A(D), ‖ f (V )‖ = supξ∈σu(V ) | f (ξ)|.

Proof. a) For a given f ∈ C(Γ ) and ε > 0, there exists a function g ∈ C(Γ ) such that f (ξ) = g(ξ) on σ(V ) and ‖g‖∞ �
supξ∈σ(V ) | f (ξ)| + ε. Since f (V ) = g(V ), we have∥∥ f (V )

∥∥ = ∥∥g(V )
∥∥ � ‖g‖∞ � sup

ξ∈σ (V )

∣∣ f (ξ)
∣∣ + ε.

Since ε was arbitrary, we obtain ‖ f (V )‖ � supξ∈σ(V ) | f (ξ)|. The opposite inequality follows from (2.1). Note also that if
σ(V ) 	= Γ, then V −1 ∈ AV .

b) It is well known that if V is a non-invertible isometry, then σ(V ) = D. Now, the assertion follows from a)
and (1.1). �

The following result is well known (see, for instance [3] and [7, Lemma 2.1]):

Lemma 2.3. If T ∈ B(X) is a contraction, then there exists a Banach space Y , a linear contractive operator J : X �→ Y with dense range
and an isometry V on Y such that:

i) V J = J T ; ii) ‖ J x‖ = limn→∞ ‖T nx‖ for all x ∈ X; iii) σ(V ) ⊂ σ(T ).

The triple (Y , J , V ) will be called the limit isometry associated to T . It is easy to verify that if T ∈ B(X) is polynomially
bounded, then the limit isometry V associated to T is also polynomially bounded (see also [3]).

For a given T ∈ B(X) and x ∈ X , we define ρT (x) to be the set of all λ ∈ C for which there exists a neighborhood Uλ of
λ with u(z) analytic on Uλ having values in X such that (zI − T )u(z) = x on Uλ . This set is open and contains the resolvent
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set ρ(T ) of T . By definition, the local spectrum of T at x, denoted by σT (x), is the complement of ρT (x), so it is a closed
subset of σ(T ).

Let T ∈ B(X) be a contraction and let (Y , J , V ) be the limit isometry associated to T . We claim that σV ( J x) ⊂ σT (x)
for every x ∈ X . To see this, let λ ∈ ρT (x). Then there exists a neighborhood Uλ of λ with X-valued function u(z) analytic
on Uλ such that (zI − T )u(z) = x, z ∈ Uλ . It follows that (z J − J T )u(z) = J x. In view of Lemma 2.3i), since J T = V J , we
get (zI − V ) J u(z) = J x, z ∈ Uλ . This shows that λ ∈ ρV ( J x).

The following lemma was proved in [3, Lemma 1.3]:

Lemma 2.4. If V ∈ B(X) is an isometry and x ∈ X is a cyclic vector of V , then

σu(V ) = σV (x) ∩ Γ.

Proposition 2.5. If T ∈ B(X) is a polynomially bounded operator, then for every f ∈ A(D) and x ∈ X,

lim
n→∞

∥∥T n f (T )x
∥∥ � sup

ξ∈σT (x)∩Γ

∣∣ f (ξ)
∣∣‖x‖.

Proof. For a given x ∈ X , let E be the closed linear span of the set {T nx: n � 0}. Then, E is a T -invariant subspace of X .
Clearly, the restriction T |E of T to E is also a polynomially bounded operator. Let (Y , J , V ) be the limit isometry associated
to T |E . As we already noted above that σV ( J x) ⊂ σT |E (x) and therefore, σV ( J x) ∩ Γ ⊂ σT |E (x) ∩ Γ.

Let us show that σT |E (x)∩Γ ⊂ σT (x)∩Γ. Let ξ ∈ ρT (x)∩Γ and let π : X �→ X�E be the canonical mapping. Then there
exists a neighborhood Uξ of ξ with u(z) analytic on Uξ having values in X such that (zI − T )u(z) = x on Uξ . Since

u(z) = R(z, T )x =
∞∑

n=0

z−n−1T nx ∈ E,

for all z ∈ Uξ with |z| > 1, we have πu(z) = 0 for all z ∈ Uξ with |z| > 1. By uniqueness theorem, πu(z) = 0 for all z ∈ Uξ ,
so that u(z) ∈ E . Hence, we have (zI − T |E )u(z) = x on Uξ . This shows that ξ ∈ ρT |E (x) ∩ Γ .

Consequently, we have

σV ( J x) ∩ Γ ⊂ σT (x) ∩ Γ. (2.2)

From Lemma 2.3i) we can deduce that J x is a cyclic vector of V . In view of Lemma 2.4 and (2.2), we obtain that

σu(V ) = σV ( J x) ∩ Γ ⊂ σT (x) ∩ Γ. (2.3)

Now, let f ∈ A(D) be given. By Lemma 2.3i), we can write

f (V ) J = J f (T |E) = J
(

f (T )|E
)
,

so that f (V ) J x = J f (T )x. Since V is polynomially bounded, combining Lemma 2.3ii), Proposition 2.2 and (2.3), we have

lim
n→∞

∥∥T n f (T )x
∥∥ = ∥∥ J f (T )x

∥∥ = ∥∥ f (V ) J x
∥∥ � sup

ξ∈σu(V )

∣∣ f (ξ)
∣∣‖ J x‖ � sup

ξ∈σT (x)∩Γ

∣∣ f (ξ)
∣∣‖x‖. �

Proof of Theorem 2.1. Let S ∈ AT . For every ξ ∈ σu(T ), there exists a multiplicative functional φξ on AT such that φξ (T ) = ξ.

Since φξ has norm one, we have ‖T n S‖ � |φξ (T n S)| = |ξn Ŝ(ξ)| = |̂S(ξ)|. It follows that

lim
n→∞

∥∥T n S
∥∥ � sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣.

To prove the opposite inequality, let LT be the left multiplication operator on B(X); LT Q = T Q , Q ∈ B(X). Clearly, LT is a
polynomially bounded operator. In view of Proposition 2.5, we can write

lim
n→∞

∥∥T n f (T )Q
∥∥ � sup

ξ∈σLT (Q )∩Γ

∣∣ f (ξ)
∣∣‖Q ‖,

for all Q ∈ B(X) and f ∈ A(D). It is easy to verify that σLT (I) ∩ Γ ⊂ σu(T ). Now, by putting in the last inequality Q = I,
we obtain

lim
n→∞

∥∥T n f (T )
∥∥ � sup

ξ∈σu(T )

∣∣ f (ξ)
∣∣, f ∈ A(D).

For a given ε > 0, there exists a function f ∈ A(D) such that ‖S − f (T )‖ � ε. It follows that ‖T n S‖ � ‖T n f (T )‖ + ε
(n ∈ N), and
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sup
ξ∈σu(T )

∣∣ f (ξ)
∣∣ � sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣ + ε.

Hence, we can write

lim
n→∞

∥∥T n S
∥∥ � lim

n→∞
∥∥T n f (T )

∥∥ + ε � sup
ξ∈σu(T )

∣∣ f (ξ)
∣∣ + ε � sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣ + 2ε.

Since ε was arbitrary, we have

lim
n→∞

∥∥T n S
∥∥ � sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣,

which finishes the proof. �
Corollary 2.6. If T is a contraction on a Hilbert space, then for every S ∈ AT ,

lim
n→∞

∥∥T n S
∥∥ = sup

ξ∈σu(T )

∣∣̂S(ξ)
∣∣.

3. Applications

Let T be a contraction on a Hilbert space H such that limn→∞ ‖T nx‖ = 0 and limn→∞ ‖T ∗nx‖ = 0 for every x ∈ H .
Moreover, assume that dim(I −T T ∗)H = dim(I −T ∗T )H = 1. According to the well-known Model Theorem of Nagy–Foias [9],
T is unitarily equivalent to its model operator Mϕ = Pϕ S|Kϕ acting on the model space Kϕ := H2 � ϕH2, where ϕ is an
inner function, S f = zf is the shift operator on the Hardy space H2 and Pϕ is the orthogonal projection from H2 onto Kϕ .
It follows that for every f ∈ H∞ , the operator f (T ) is unitarily equivalent to f (Mϕ) = Pϕ f (S)|Kϕ . As is known [6, p. 235],
‖ f (Mϕ)‖ = dist( f ,ϕH∞). Hence, we have ‖T n f (T )‖ = dist(zn f ,ϕH∞) = dist( f , znϕH∞). The unitary spectrum Σu(ϕ) of ϕ
is defined as

Σu(ϕ) =
{
ξ ∈ Γ : lim inf

z∈D, z→ξ

∣∣ϕ(z)
∣∣ = 0

}
.

It follows from the Lipschitz–Moeller Theorem [6, p. 81] that σu(T ) = Σu(ϕ). Now, applying Theorem 2.1, we have the
following.

Corollary 3.1. If ϕ is an inner function, then for every f ∈ A(D),

lim
n→∞ dist

(
f , znϕH∞) = sup

ξ∈Σu(ϕ)

∣∣ f (ξ)
∣∣.
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