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This Note deals with the equivalence between the optimality of a transport plan for the
Monge–Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome
of the construction in Bianchini and Caravenna (2009) [7]. We emphasize the measurability
assumption on the hidden structure of linear preorder, applied also to extremality and
uniqueness problems among the family of transport plans.
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r é s u m é

Dans la présente note nous décrivons brièvement la construction introduite dans Bianchini
and Caravenna (2009) [7] à propos de l’équivalence entre l’optimalité d’un plan de
transport pour le problème de Monge–Kantorovich et la condition de monotonie c-
cyclique—ainsi que d’autres sujets que cela nous amène à aborder. Nous souhaitons mettre
en évidence l’hypothèse de mesurabilité sur la structure sous-jacente de pré-ordre linéaire.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soient μ, ν deux mesures de probalité boréliennes sur [0,1] et c : [0,1]2 → [0,+∞] une fonction coût. On note B la
σ -algèbre borélienne. Le problème de Monge–Kantorovich traite de la minimisation de la fonctionnelle coût

I(π) :=
∫

c(x, y)π(dx dy)

sur la famille des plans de transport sur π ∈ �(μ,ν), qui sont des mesures de probabilité boréliennes sur [0,1]2 de margi-
nales μ, ν :

Π(μ,ν) := {
π ∈ P

([0,1]2): π
(

A × [0,1]) = μ(A), π
([0,1] × A

) = ν(A) for A ∈ B
}
.

On suppose, tacitement, que c is π -mesurable pour tout π ∈ Π(μ,ν) et que I(π) < +∞ pour un π ∈ Π(μ,ν).
Si un plan de plan de transport π minimise I pour un coût co-analytique c, alors il doit être concentré sur un ensemble

� c-cycliquement monotone (en bref c-monotone), c’est-à-dire que Γ satisfait la condition ponctuelle :

∀M ∈ N, (xi, yi) ∈ Γ c(x0, y0) + · · · + c(xM , yM) � c(x1, y0) + · · · + c(xM , yM−1) + c(x1, yM).
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Toutefois cette condition est simplement nécessaire [2]. Partant d’une idée de [17], en supposant des conditions supplémen-
taires, une investigation sur l’équivalence de la c-monotonicité et de l’optimalité est mise en évidence ; les résultats sont
donnés dans [2–7,13–15].

Le problème fondamental résolu dans cette Note porte sur la discussion d’une condition de préordre aboutissant à
une réponse positive qui recouvre les autres cas rencontrés dans la littérature. Les démonstrations détaillées sont données
dans [7], où la construction ébauchée ici est appliquée au problème de l’unicité d’un plan concentré sur un ensemble donné
et extrémal sur Π(μ,ν).

Soient π et Γ comme ci-dessus. Le résultat fondamental est le suivant :

Définition 0.1. On définit le préordre suivant : x � x′ s’il existe un chemin axial de coût fini les reliant, c’est-à-dire :

∃(xi, yi) ∈ Γ, i � I ∈ N, x0 = x, xI+1 = x′ : (xi+1, yi) ∈ {c < +∞} ∀i = 0, . . . , I.

Il est μ-linéarisable s’il existe un préordre linéaire ρ tel que {xρx′} est π ′-mesurable pour tout π ′ ∈ �(μ,μ) et x � x′
implique xρx′ , mais si de plus x′ρx alors ou x = x′ ou bien x′ � x.

Théorème 0.2. Si le préordre {x � x′} est μ-linéarisable, alors π̄ minimise I .

Corollaire 0.3. S’il existe une famille dénombrable d’ensembles boréliens Ai, Bi ⊂ [0,1], i ∈ N tel que

π

(⋃
i

Ai × Bi

)
= 1, μ ⊗ ν

(⋃
i

(
Ai × Bi

)⋂
{c = +∞}

)
= 0,

alors le préordre {x � x′} est μ-linéarisable et donc π̄ minimise I .

1. Introduction to the problem

Optimal mass transportation has been an exceptionally prolific field in the very last decades, both in theory and appli-
cations. What we reconsider is though a basic question in the foundations.

Let μ, ν be two Borel probability measures on [0,1] and c : [0,1]2 → [0,+∞] a cost function. Denote by B the Borel
σ -algebra. The Monge–Kantorovich problem deals with the minimization of the cost functional

I(π) :=
∫

c(x, y)π(dx dy)

among the family of transport plans π ∈ Π(μ,ν), which are Borel probability measures on [0,1]2 having marginals μ, ν:

Π(μ,ν) := {
π ∈ P

([0,1]2): π
(

A × [0,1]) = μ(A), π
([0,1] × A

) = ν(A) for A ∈ B
}
.

We tacitly assume that c is π -measurable for all π ∈ Π(μ,ν) and that I(π) < +∞ for some π ∈ Π(μ,ν).
When the cost c is l.s.c., then by [2] any optimal transport plan π must be concentrated on a c-cyclically monotone

(briefly c-monotone) set Γ , meaning [16] that Γ satisfies the pointwise condition

∀M ∈ N, (xi, yi) ∈ Γ c(x0, y0) + · · · + c(xM , yM) � c(x1, y0) + · · · + c(xM , yM−1) + c(x1, yM). (1)

This expresses that one cannot lower the cost of π by cyclic perturbations of the transport plan (see also below). In [2] it
is also provided the following counterexample, showing that the condition is not sufficient in general.

Example 1.1. Consider μ = ν = L1�[0,1] and define the following cost function (Fig. 1):

c(x, y) =
⎧⎨
⎩

1 if y = x,

2 if y = x + α mod 1,

+∞ otherwise.

α ∈ [0,1] \ Q.

Being α irrational, the plan (x, x + α mod 1)�L1 is trivially c-cyclically monotone: the verification with Γ := {(x, x +
α mod 1)}x∈[0,1] leads to 2M < +∞, M ∈ N. However it is not optimal, since the plan (x, x)�L1 has lower cost.

Since c-cyclical monotonicity is more handily verifiable, [17] rose the question of its equivalence with optimality for
c(x, y) = ‖y − x‖2. Improvements of [2] were soon given, independently, in the case both of atomic marginals or continuous
cost [13] and in the case of real valued, l.s.c. cost functions c [14], answering Villani’s question. Since then other cases have
been covered [15,3,6,4,5]. We briefly outline here the approach we pursued in [7].
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Fig. 1. Level sets of the cost c.

Fig. 1. Ensemble de niveau de c.

2. Main statement

Let π̄ ∈ Π(μ,ν) a transference plan, with finite cost I(π̄ ), concentrated on a c-monotone subset Γ of {c < +∞}. The
aim is to give a concrete construction in order to test whether π̄ is optimal by exploiting the c-monotonicity of Γ .

The answer we propose relies on the following intrinsic preorder on [0,1]. We recall that a preorder is a transitive
relation R ⊂ [0,1]2: whenever xRx′, x′Rx′′ then xRx′′ .1 It reduces to a partial order when it is antisymmetric: if xRx′, x′Rx
then x = x′ . A relation is linear if every two elements are comparable: for x, x′ ∈ [0,1] either xRx′ or x′Rx. If R is a linear
preorder, notice also that R ∩ R−1 is a natural equivalence relation associated to it.

Definition 2.1. Define x � x′ if there exists an axial path with finite cost connecting them:

∃(xi, yi) ∈ Γ, i � I ∈ N, x0 = x, xI+1 = x′: (xi+1, yi) ∈ {c < +∞} ∀i = 0, . . . , I.

Define x ∼ x′ if there exists a closed cycle with finite cost connecting them:

∃(xi, yi) ∈ Γ, i � I ∈ N, ∃ j ∈ {0, . . . , I}: x0 = xI+1 = x, x j = x′, (xi+1, yi) ∈ {c < +∞} ∀i = 0, . . . , I.

Lemma 2.2. The relation � is a preorder. Moreover x ∼ x′ iff x � x′ and x′ � x.

As a corollary, the relation {(x, x′): x ∼ x′} is an equivalence relation on a subset of [0,1], easily extendable as {x ∼ x′} ∪
{x = x′}. The preorder � induces a partial order on the quotient space [0,1]/ ∼, but its extension is more subtle. Let m be
a Borel probability measure.

Definition 2.3. A preorder P on [0,1] is Borel linearizable if there exists a Borel linear order B ⊃ P such that B ∩ B−1 =
P ∩ P−1 ∪ {x = y}. It is m-linearizable if instead B is π ′-measurable for all π ′ ∈ Π(m,m).

The following result does not rely on the Axiom of Choice. However, under it any preorder is a subset of a linear
preorder B , which in general fails to be m ⊗ m-measurable [7, C.12]: μ-linearizability is then a measurability condition.

Theorem 2.4. If the preorder {x � x′} is μ-linearizable, then π̄ minimizes I .

An analogous statement holds with ν instead of μ if one applies Definition 2.1 after inverting the coordinates; let ∝ and
≈ be the corresponding partial order and equivalence relation.

Corollary 2.5. If there exists a countable family of Borel sets Ai, Bi ⊂ [0,1], i ∈ N, such that

π̄

(⋃
i

Ai × Bi

)
= 1, μ ⊗ ν

(⋃
i

(Ai × Bi) ∩ {c = +∞}
)

= 0,

then the preorder {x � x′} is μ-linearizable and therefore π̄ minimizes I .

1 We denote xRx′ if (x, x′) ∈ R .
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The corollary covers the presently known cases where c-monotonicity implies optimality: there are countably many
classes of ∼ and consequently the linearization of the preorder, on a discrete set, is easily solvable by induction.

Notice moreover what happens in Example 1.1 choosing the diagonal as Γ : ∼ is the trivial equivalence relation {y = x}
and � ends to the standard example of nonlinearizable Borel preorder—the Vitali one [9]; with Γ = {c < +∞} instead the
quotient is the Vitali set and there is no disintegration of L1 strongly consistent with ∼.

If the preorder � is Borel, then either Theorem 2.4 holds or the preorder embeds a copy of the Vitali preorder [11].

3. Sketch of the proof

The result of Theorem 2.4 is based on a reduction argument. More precisely, we split the optimal transport problem
within the classes of ∼ and to a problem of uniqueness in the quotient space [0,1]/ ∼. This is formalized by means of
the Disintegration Theorem, a very useful tool which decomposes a measure in a superposition of conditional measures
concentrated on given subsets, thus ‘localizing’ it. We recall the Disintegration Theorem in the last section.

The solution of the reduced transport problems will follow from the next property of the equivalence classes.

Lemma 3.1. Let μ′ , ν ′ be Borel probability measures on [0,1]. If μ′ is concentrated on a class of ∼, then each π ′ ∈ Π(μ′, ν ′) concen-
trated on Γ is a minimizer of the cost functional I in Π(μ′, ν ′).

Sketch. Optimality is obtained constructing by Rüschendorf’s formula optimal Kantorovich potentials in each equivalence
class C , for any transport plan concentrated on2 Γ ∩ (C × Γ (C)). A different proof is also in [15]. �

The reduction argument, performed just below, consists in disintegrating μ in probability measures {μα}α∈[0,1] on the
equivalence classes of ∼, ν in probabilities {να}α∈[0,1] on the classes of ≈ and every transport plan π ∈ Π(μ,ν) with
finite cost in transport plans πα ∈ Π(μα,να). From π̄ (Γ ) = 1 one would obtain π̄α ∈ Π(μα,να) concentrated on Γ : the
perturbations occur within the equivalence classes. Lemma 3.1 would ensure that I(π̄α) � I(πα) for m-a.e. α. Therefore, in
this case, by the disintegration formula and the optimality within the classes we would get

I(π̄ ) =
∫

c(x, y) π̄ (dx dy)
(3)=

∫ {∫
c(x, y) π̄α(dx dy)

}
m(dα)

L.3.1
�

∫ {∫
c(x, y)πα(dx dy)

}
m(dα)

(3)=
∫

c(x, y)π(dx dy) = I(π).

If � is μ-linearizable, the next theorem provides a μ-measurable quotient map q1 : [0,1] → [0,1] for ∼.

Theorem 3.2. Let π̆ ∈ Π(μ̆, μ̆) be concentrated on a linear preorder L which is π ′-measurable for all π ′ ∈ Π(μ̆, μ̆). Let E be the
equivalence relation L ∩ L−1 . Then π̆ (E) = 1 and the disintegration of μ̆ is strongly consistent.

Sketch. Let � be the lexicographic ordering in [0,1]α , with α ∈ ω1 countable ordinal. We exhibit a Borel map hα : [0,1] →
[0,1]α s.t., up to an μ̆-negligible set, xLx′ if and only if hα(x) � hα(x′). Since ([0,1]α, B) can be measurably injected in
([0,1], B), the existence of hα ensures on one hand that the disintegration of μ̆ w.r.t. E is strongly consistent (Theorem A.2).
On the other hand, π̆ (L) = 1 and π̆ (E) = 1 become equivalent to (hα ⊗hα)�π̆({α = β}) = 1: indeed, one proves by transfinite
induction on α that there is a unique transport plan from a measure to itself concentrated on {α � β} ⊂ [0,1]α × [0,1]α ,
induced by the identity map.

The definition of hα , by transfinite induction, is based on the Disintegration Theorem, introduced just below. The first
component is h1(x) := μ̆({x′: x′ � x}); then we disintegrate μ̆ w.r.t. h1 and define h2(x) = (h1(x), μ̆h1(x)({x′: x′ � x})), . . . .
The sequence becomes constant in |α| steps. For L Borel, in [9] one finds a different Borel order preserving immersion in
({0,1}α,�) without reference measures. �

Now it is worth noticing the crosswise structure of the relations: the nontrivial classes of ≈ are of the form

Γ (A) = {
y: (x, y) ∈ Γ for some x ∈ A

}
with A = {

x′: x′ ∼ x
}
, x ∈ [0,1]. (2)

As a consequence, one can define the quotient projection w.r.t. ≈ by setting q2(Γ (x)) := q1(x) and also ν has a disintegra-
tion strongly consistent with ≈, by π̄ ’s marginal conditions. By (2) then the quotient probability spaces ([0,1],μ)/ ∼ and
([0,1], ν)/ ≈ can be identified with a Borel probability space ([0,1],m).

For any plan π ∈ Π(μ,ν) its quotient measure n w.r.t. the product equivalence relation q1 ⊗ q2 belongs consequently to
Π(m,m). Since π has finite cost, n is clearly concentrated on q1 ⊗ q2({c < +∞}).

2 We use the notation of multivalued function Γ (A) := {y: ∃x ∈ A: (x, y) ∈ Γ }, as well as Γ −1 := {(y, x): (x, y) ∈ Γ }.
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Lemma 3.3. The set q1 ⊗ q2({c < +∞}) is the partial order q1 ⊗ q1({x � x′}) in the quotient space.

The assumption of Theorem 2.4 grants that this partial order can be extended to a linear order which is π ′-measurable
for every π ′ ∈ Π(m,m). Applying Theorem 3.2 one obtains then that n = (I, I)�m for every plan of finite cost π . As a
consequence, any π ∈ Π(μ,ν) admits the strongly consistent disintegration π = ∫

πα m(dα) w.r.t. the partition {(q1 ⊗
q2)

−1(α)}α∈[0,1] . The crosswise structure yields then the following statement.

Lemma 3.4. By the marginal conditions, πα ∈ Π(μα,να) for m-a.e. α.

4. Mention of side studies and remarks

Our basic tool has been the Disintegration Theorem. The main references for our review on that has been [1,8]. We also
applied it to a family of equivalence relations closed under countable intersection, establishing that there is an element of
the family which is the finest partition, in a measure theoretic sense. In particular, in the construction of the immersion hα

of Theorem 3.2 we ended up with such a family, which was not closed under uncountable intersection because uncountable
intersections of sets generally are not measurable. Having a finest element, we could value the projection in the Polish space
[0,1]α , α ∈ ω1, instead of [0,1]ω1 .

As briefly sketched, optimality holds in the equivalence classes basically by Kantorovich duality, the equivalence relation
is indeed chosen for having real valued optimal Kantorovich potentials by Rüschendorf’s formula.

Moreover, the necessity of c-monotonicity with co-analytic cost functions—clearly assuming that the optimal cost is
finite—is a corollary of the general duality in [12].3 It follows just by the fact that there is no cyclic perturbation λ of the
optimal plan π such that I(π + λ) < I(π), where cyclic perturbations of π are defined as nonzero measures λ with Jordan
decomposition λ = λ+ − λ− satisfying λ− � π and which can be written, for some mI ∈ M+([0,1]2I ), I ∈ N, as

λ+ =
∑

I

1

I

∫

[0,1]2I

I∑
i=1

δ(w2i−1,w2i) m(dw), λ− =
∑

I

1

I

∫

[0,1]2I

I∑
i=1

δ(w2i+1 mod 2n,w2i) m(dw).

Observe that if � is μ-linearizable, each transport plan of finite cost is concentrated on (q1 ⊗ q2)
−1({α = β}); as a

separate observation based on Von Neumann’s Selection Theorem, one can construct optimal potentials for the cost which
is +∞ out of that set, gluing the ones in the classes.

As a final remark on the topic, we observe the following asymmetry: for universally measurable cost functions,
c-cyclically monotone transference plans are optimal under the universally measurable linear preorder condition; however,
in this case the necessity of c-cyclical monotonicity is not proven, since duality is provided in [12] for Souslin functions,
corresponding to co-analytic costs.

In general, � can be μ-linearizable for some c-cyclically monotone set Γ , π(Γ ) = 1, and not for others, and we do not
see how to choose a best one—which in the case of continuous cost would be the support. This problem is intrinsic in
the ‘pointwise’ definition of c-monotonicity. Another question is what happens when there is no such set Γ such that �
is μ-linearizable. Examples show a crazy behavior. As already mentioned, for Borel sets [11] states that in this case there
is a situation analogous to Example 1.1 and the quotient projection w.r.t.

⋃
M∈N

({x � y} ∪ {x � y}−1)M is not universally
measurable—but, however, since we have fixed measures optimality could still hold.

We conclude noticing that in [7] we study with the same approach the problems of establishing if a plan π ∈ Π(μ,ν)

is extremal and if it is the unique plan in Π(μ,ν) concentrated on a given set A, say universally measurable. A necessary
condition is respectively acyclicity/A-acyclicity: π(Γ ) = 1 for a Γ , say universally measurable, such that the r.h.s. of (1) is
always +∞ when c = χΓ / c = χA . In the first case we precisely recover the Borel Countable Limb Condition in [10]. The
second case comes from the problem of uniqueness in the quotient space described above. Considering the same axial
preorder � defined above, but with Γ /A in place of {c < +∞}, the statement becomes

Theorem 4.1. If Γ is acyclic/A-acyclic and � is μ-linearizable, then π is extremal/the unique transport on A.

Appendix A. The Disintegration Theorem

Consider an equivalence relation ≈ on [0,1] and its quotient map q : [0,1] → [0,1]/ ≈. Given a Borel probability measure
ξ on [0,1], let Θξ be the σ -algebra of ξ -measurable sets. The push forward of a σ -algebra of A ⊂ Θξ and the push forward
probability measure η = q�ξ are defined on [0,1]/ ≈ as

S ∈ q�A ⇐⇒ q−1(S) ∈ A, η(S) := ξ
(
q−1(S)

)
for S ∈ q�Θξ .

3 Necessity was proven in [2] by Kantorovich duality for l.s.c. cost functions, and extended to the Borel case in [3] with Kellerer results. We provide in [7]
a different proof, still based on Keller duality, for co-analytic cost functions.
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Definition A.1. The disintegration of a Borel probability measure ξ on [0,1] strongly consistent with a map q : [0,1] →
[0,1]/ ≈ is a family of Borel probability measures {ξα}α∈[0,1] , the conditional probabilities, such that α �→ ∫

S ξα(O ) is η-
measurable for all S ∈ q�B, where η := q�ξ , and

ξ
(

O ∩ h−1(S)
) =

∫
S

ξα(O )η(dα) for all O ∈ B, S ∈ q�B, (3a)

ξα(Xα) = 1 for η-a.e. α ∈ [0,1]. (3b)

It is unique if for any other family {ξ ′
α}α∈[0,1] satisfying (3a) then ξα = ξ ′

α for η-a.e. α.

Theorem A.2 (Disintegration Theorem). If there exists a measurable injection ([0,1]/ ≈,q�Θξ ) ↪→ ([0,1], B), then there exists a
unique disintegration of ξ strongly consistent with q.
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