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Bourgain and Brezis established, for maps f ∈ Ln(Tn) with zero average, the existence of a
solution Y ∈ W 1,n ∩ L∞ of (1) div Y = f . Maz’ya proved that if, in addition, f ∈ Hn/2−1(Tn),
then (1) can be solved in Hn/2 ∩ L∞. Their arguments are quite different. We present
an elementary property of fundamental solutions of the biharmonic operator in two
dimensions. This property unifies, in two dimensions, the two approaches, and implies
another (apparently unrelated) estimate of Maz’ya and Shaposhnikova. We discuss higher
dimensional analogs of the above results.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Bourgain and Brezis ont montré que, si f ∈ Ln(Tn) est de moyenne nulle, alors (1) div Y =
f a une solution Y ∈ W 1,n ∩ C0. Maz’ya a prouvé que si, de plus, on a f ∈ Hn/2−1(Tn),
alors il existe une solution de (1) dans Hn/2 ∩ L∞. Les deux preuves sont distinctes. Dans
cette note, nous présentons une propriété élémentaire des solutions fondamentales de
l’opérateur biharmonique en dimension deux. Cette propriété unifie, en dimension deux,
les approches de Bourgain–Brezis et Maz’ya, et implique une autre estimation de Maz’ya et
Shaposhnikova (apparemment non liée aux précédentes). Nous discutons des variantes de
ces résultats en dimension supérieure.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In their pioneering work [1], Bourgain and Brezis proved that, when a map f ∈ Ln(Tn) has zero average,

div Y = f (1)

has a solution Y ∈ W 1,n ∩ C0. By duality, this result is trivially equivalent to the estimate

‖u‖Ln/(n−1) � ‖∇u‖W −1,n′+L1 , ∀u ∈ Ln(
T

n) such that
∫
Tn

u = 0. (2)
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The proof of (1) is very elaborate (the construction of Y is explicit and based on a nonlinear mechanism). So far, there is
no straightforward argument yielding (2) when n � 3. However, when n = 2, Bourgain and Brezis [1] present a direct proof
of (2) which relies on Fourier series, and more specifically on the fact that

∑
m∈Z2\{0}

m1m2

(m2
1 + m2

2)
2

eım·x ∈ L∞ and
∑

m∈Z2\{0}
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1 − m2
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(m2
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2)
2

eım·x ∈ L∞. (3)

Assertion (1) is equivalent to the fact that for every vector field X ∈ W 1,n(Tn) there is some Y ∈ W 1,n ∩ C0 such that
X = Y + Z , where div Z = 0. For n � 3, a more involved version of this result has been established by Bourgain and Brezis
[2,3]: in the previous decomposition, one may pick Z such that curl Z = 0. This implies new regularity results for the
Hodge decomposition [2,3]. For example, when n = 3, Bourgain and Brezis [3] prove, for vectors fields f ∈ L3(T3) such that
div f = 0 and

∫
T3 f = 0, the existence of a Y ∈ W 1,3 ∩ C0(T3) such that

curl Y = f . (4)

Maz’ya [4] studied the solvability of (1) when f ∈ Hn/2−1(Tn) has zero average. The main result there is the existence of a
solution Y ∈ Hn/2 ∩ L∞ of (1). The proof of Maz’ya [4] is by duality, based on the estimate

‖u‖H1−n/2 � ‖∇u‖H−n/2+L1 , ∀u ∈ H1−n/2(
T

n) such
∫
Tn

u = 0. (5)

Actually, [4] contains a version of (5) in R
n instead of T

n and with sharp constants. The proof of (5) is based on explicit
formulae for the Fourier transform of singular integral operators, in the spirit of Stein and Weiss [7], Chapter IV, Theo-
rem 4.5, p. 164. In dimension two, (5) is the same as (2) and provides a third argument leading to the solvability of (1) in
H1 ∩ C0(T2).

In a different direction, Maz’ya and Shaposhnikova [6] proved the following estimates: for u ∈ C∞(Tn), one has

∣∣∣∣
∫
Tn

∂1u∂2u

∣∣∣∣ +
∣∣∣∣
∫
Tn

(
(∂1u)2 − (∂2u)2)∣∣∣∣ �

(∫ ∣∣(−�)n/4+1/2u
∣∣)2

. (6)

Their approach is again based on Fourier transform formulae for singular integral operators, in the spirit of the proofs of (5)
in [4] and of the H3/2-regularity result in [5], and apparently unrelated to the proof of (2) via (3) in [1].

Our first contribution is the following: we revisit and connect, in two dimensions, (3) and (6) using a partial differential
equations viewpoint. More specifically, our starting point is the following

Proposition 1. In R
2 , the operator �2 has a fundamental solution F such that ∂1∂2 F , ∂2

1 F − ∂2
2 F ∈ L∞ .

Proof. Let F (x) = 1
8π |x|2 ln |x| − 1

16π |x|2. One checks easily that ∂2
j F = 1

4π ln |x| + 1
4π

x2
j

|x|2 , ∂1∂2 F = 1
4π

x1x2
|x|2 . In particular,

�F = 1
2π ln |x|, so that �2 F = δ, while ∂1∂2 F , ∂2

1 F − ∂2
2 F ∈ L∞ . �

Corollary 2. Let G be the (unique modulo constants) solution of �2G = δ − (1/2π)2 on T
2 . Then ∂1∂2G and ∂2

1 G −∂2
2 G belong to L∞ .

Equivalently, (3) holds.

Proof. Let ϕ ∈ C∞
c (B(0,1/2)) with ϕ = 1 in B(0,1/4). Then H = ϕF may be identified with a map on T

2. Since �2(G − H) ∈
C∞ , we have G − H ∈ C∞ . We conclude via ∂1∂2 H, ∂2

1 H − ∂2
2 H ∈ L∞ .

Noting that, up to a constant, we have G = ∑
m∈Z2\{0} 1

(m2
1+m2

2)2 eım·x , we find that Corollary 2 is equivalent to (3). �
Remark 1. Corollary 2 implies (6) when n = 2. Here is the proof. We treat, e.g., the first integral in (6). We have∫

∂1u∂2u =
∫ [(

�2G
) ∗ ∂1u

]
∂2u = −

∫ [
(∂1∂2G) ∗ (�u)

]
(�u).

We deduce that∣∣∣∣
∫

∂1u∂2u
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∥∥(∂1∂2G) ∗ (�u)

∥∥
L∞‖�u‖L1 � ‖∂1∂2G‖L∞‖�u‖L1‖�u‖L1 � ‖�u‖2

L1 .

Next we discuss the higher dimensional analogs of Proposition 1 and Corollary 2, as well as their connection to (5)
and (6).



P. Mironescu / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 513–515 515
Proposition 3. In R
n, the operator (−�)n/2+1 has a fundamental solution F such that ∂1∂2 F ∈ L∞ and ∂2

1 F − ∂2
2 F ∈ L∞ .

Here, when n is odd, a fundamental solution F is a temperate solution of (−�)n/2+1/2 F = F −1((2π |ξ |)−1).

Proof. One may check that, with αn := 1
2n+1πn/2Γ (n/2+1)

, the map F (x) := αn{|x|2 ln |x|− |x|2/2} is a fundamental solution. In

addition, we have ∂1∂2 F = 2αnx1x2|x|−2 and ∂2
1 F − ∂2

2 F = 2αn(x2
1 − x2

2)|x|−2. �
The analogs of Corollary 2 and formula (3) are given by

Proposition 4. Let G be the (unique up to constants) solution of (−�)n/2+1G = δ − (1/2π)n on T
n. Then ∂1∂2G and ∂2

1 G − ∂2
2 G

belong to L∞ . Equivalently,

∑
m∈Zn\{0}

m1m2

|m|n+2
eım·x ∈ L∞ and
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m2
1 − m2

2

|m|n+2
eım·x ∈ L∞. (7)

Sketch of proof. When n is even, (−�)n/2+1 is a local operator, so that we may repeat the proof of Corollary 2. When n is
odd, we mimic the proof of (3) in [1, pp. 405–406]. �
Remark 2. In the same way that Corollary 2 implies (6) when n = 2, Proposition 4 implies (6) for all n.

Remark 3. One can recover estimate (5) of Maz’ya by combining (6) to some arguments used by Bourgain and Brezis [1] in
the proof of (2). The starting point of the proof is the following estimate, reminiscent of [1, p. 404], and valid when u has
zero average:

‖u‖2
H1−n/2 ∼

∑
j<k

(∥∥∂ j∂k(−�)−n/4−1/2u
∥∥2

L2 + ∥∥(
∂2
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k

)
(−�)−n/4−1/2u

∥∥2
L2

)
. (8)

Let ∇u = U + V , U ∈ H−n/2, V ∈ L1. Inspired by [1, pp. 403–405], we treat, e.g., the first term in (8) for j = 1, k = 2 using
the identity

∥∥∂1∂2(−�)−n/4−1/2u
∥∥2

L2 =
∫ {[

∂1∂2(−�)−n/4−1/2u
][

(−�)−n/4−1/2(∂1U2 + ∂2U1)
]

− [
∂1(−�)−n/4−1/2U2

][
∂2(−�)−n/4−1/2U1

]
+ [

∂1(−�)−n/4−1/2 V 2
][

∂2(−�)−n/4−1/2 V 1
]}

. (9)

Using standard elliptic estimates for the first two integrals on the right-hand side of (9) and Proposition 4 for the last
integral, we find that

∥∥∂1∂2(−�)−n/4−1/2u
∥∥2

L2 �
∥∥∂1∂2(−�)−n/4−1/2u

∥∥
L2‖U‖H−n/2 + ‖U‖2

H−n/2 + ‖V ‖2
L1 ,

i.e., ‖u‖H1−n/2 � ‖U‖H−n/2 + ‖V ‖L1 .

Acknowledgement

The author warmly thanks Haïm Brezis for useful discussions.

References

[1] J. Bourgain, H. Brezis, On the equation div Y = f and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393–426.
[2] J. Bourgain, H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 539–543, 393–426.
[3] J. Bourgain, H. Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. 9 (2007) 277–315.
[4] V. Maz’ya, Bourgain–Brezis type inequality with explicit constants, in: L. De Carli, M. Milman (Eds.), Interpolation Theory and Applications, in: Contemp.

Math., vol. 445, AMS, Providence, RI, 2007, pp. 247–252.
[5] V. Maz’ya, Estimates for differential operators of vector analysis involving L1-norm, J. Eur. Math. Soc. 12 (2010) 221–240.
[6] V. Maz’ya, T. Shaposhnikova, A collection of sharp dilation invariant integral inequalities for differentiable functions, in: V. Maz’ya (Ed.), Sobolev Spaces

in Mathematics I, in: Int. Math. Ser. (N. Y.), vol. 8, Springer, New York, 2009, pp. 223–247.
[7] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.


	On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to L1 vector fields
	Acknowledgement
	References


