

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial Differential Equations

Existence of solutions for semilinear elliptic problems in exterior of ball

Existence des solutions pour des problèmes elliptiques non linéaires à extérieur de la boule

Jacopo Bellazzini

Dipartimento di Matematica Applicata Università di Pisa, Via Buonarroti 1/C, 56127 Pisa, Italy

ARTICLE INFO

Article history: Received 12 February 2010 Accepted after revision 18 March 2010 Available online 24 April 2010

Presented by Haïm Brezis

ABSTRACT

We prove the existence of solutions for the semilinear elliptic problem in $\varOmega=B(0,R)^c,$ $N\geqslant 3.$

 $-\Delta u = G'(u),$

under suitable general assumptions on the nonlinear term *G*. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous demontrons l'existence d'une solution pour des équation elliptiques non linéaires in $\Omega = B(0, R)^c$, $N \ge 3$

 $-\Delta u = G'(u),$

pour a general nonlinéarité G. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In this Note we consider the semilinear elliptic problem in the exterior of a ball, $N \ge 3$

$$\begin{cases} -\Delta u = G'(u) & \text{on } \Omega = B(0, R)^c, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1)

where $B(0, R)^c = \{x \in \mathbb{R}^N \text{ such that } |x| > R\}$ and $G = -\frac{1}{2}u^2 + R(u) \in C^2$ fulfill the hypotheses

$$\left| R'(u) \right| \leqslant c_1 |u|^{p-1} + c_2 |u|^{q-1} 2
⁽²⁾$$

there exists
$$\xi_0 > 0$$
 s.t. $G(\xi_0) > 0$. (3)

Eq. (1) has been intensively studied in case $\Omega = \mathbb{R}^N$, see e.g. [3], and in case Ω bounded domain with regular boundary for a wide class of nonlinearities, see e.g. [1]. Eq. (1) is the Euler-Lagrange equation associated to the following functional $I : H_0^1(\Omega) \to \mathbb{R}$ given by

E-mail address: j.bellazzini@ing.unipi.it.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.03.017

$$I(u) = \frac{1}{2} \|u\|_{H_0^1(\Omega)}^2 - \int R(u) \, \mathrm{d}x.$$
(4)

It is well known that the functional I(u) exhibits a mountain pass geometry (see Proposition 1) and in this scenario the classical deformation lemma asserts that a Palais–Smale sequence (PS) exists at critical level *c*. The first and crucial difficulty is to give an a priori estimate on the Palais–Smale sequence, i.e. to prove that u_n is bounded in $H_0^1(\Omega)$ in case of general nonlinearity not fulfilling the classical Ambrosetti–Rabinowitz condition.

In an abstract framework, given an Hilbert space *H* let we consider the family of functionals that shows a mountain pass geometry for $\lambda = 1$

$$I(\lambda, u) = \frac{1}{2} \|u\|_{H}^{2} - \lambda J(u),$$
(5)

where $J \in C^2(H, \mathbb{R})$ and $\lambda \in \mathbb{R}^+$ and $\nabla J : H \to H$ is a compact mapping.

Theorem 1.1 of [5] states that there exists a sequence $(\lambda_n, u_n) \in \mathbb{R} \times H$ such that

$$\begin{cases} u_n \text{ is a critical point of } I(\lambda_n, u) \ \lambda_n \to 1, \end{cases}$$
(6)

$$I(\lambda_n, u_n)$$
 bounded.

As a matter of fact the existence of a sequence u_n of solution for the approximated problem does not guarantee in general that we can pass to the limit and prove that a solution for the case $\lambda = 1$ exists. The main difficulty is again the a priori estimate on the approximated solutions u_n . In some cases, a Pohozaev type identity applied to the approximated problem, guarantees the boundness of the u_n sequence and then the existence of a solution for the original problem, see e.g. [4] and [2] in the case of nonlinear Schrödinger equation in R^N .

In this Note we show that a Pohozaev type identity for the perturbed equation exists and that this constraint gives the boundness of the perturbed solutions. Therefore, under the above mentioned hypotheses we have the following

Theorem 1 (main theorem). If (2), (3) hold then functional (4) has a mountain pass critical point.

In order to prove the main theorem we define the perturbed functional $I(\lambda, .): H^1_r(\Omega) \to \mathbb{R}$

$$I(\lambda, u) = \frac{1}{2} \|u\|_{H^{1}(\Omega)}^{2} - \lambda \int R(u) \, \mathrm{d}x,$$
(7)

where the nonlinear term is weakly continuous in

 $H_r^1(\Omega) = \{ u \in H_0^1(\Omega) \text{ such that } u \text{ radially symmetric} \}.$

Before to prove the main theorem some preliminaries are in order:

Proposition 1. If (2), (3) hold then functional (4) has a mountain pass geometry.

Proof. We notice simply that

$$I(u) \geq \frac{1}{2} \|u_n\|_{H^1_r(\Omega)}^2 - c_1 \|u_n\|_{H^1_r(\Omega)}^p - c_2 \|u_n\|_{H^1_r(\Omega)}^q,$$

and that the sequence u_n defined as follows

$$u_n(r) = \begin{cases} \xi_0(|x| - R_n + 1) & \text{for } R_n - 1 \le |x| \le R_n, \\ \xi_0 & \text{for } R_n \le |x| \le 2R_n, \\ \xi_0(2R_n - |x| + 1) & \text{for } 2R_n \le |y| \le 2R_n + 1, \\ 0 & \text{for } |x| \ge 2R_n + 1, \end{cases}$$

where ξ_0 is defined in (3) fulfills $I(u_n) < 0$ for $R_n \to \infty$. Indeed

$$\int_{\Omega} |\nabla u_n|^2 \, \mathrm{d}x = O\left(R_n^{N-1}\right)$$

and

$$\int_{\Omega} G(u_n) \, \mathrm{d}x = \int_{R_n}^{2R_n} r^{N-1} \, G(\xi_0) \, \mathrm{d}r + O\left(R_n^{N-1}\right) = CG(\xi_0)R_n^N + O\left(R_n^{N-1}\right).$$

Since $G(\xi_0) > 0$ it follows that $I(u_n)$ is negative for *n* large enough. \Box

We show now a Pohozaev type identity that is crucial for the a priori estimate.

Lemma 1. Let u be a solution of

$$-\Delta u + u = \lambda R'(u)$$
 on $\Omega = B(0, R)^c$,

then we have

$$\frac{u^{\prime 2}(R)R^{N}}{2} + \frac{2-N}{2} \int_{\Omega} |\nabla u|^{2} dx = -\lambda N \int_{\Omega} R(u) dx + \frac{N}{2} \int_{\Omega} |u|^{2} dx.$$

Proof. We write (1) using the radial symmetry of the solution

$$-u'' - \frac{N-1}{r}u' + u = \lambda R'(u),$$
(8)

then we have

$$-\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{u'^2}{2}r^{2N-2}\right) = \left(\lambda R'(u) - u\right)r^{2N-2}u'.$$

We get

$$-\int_{R}^{\infty} \frac{1}{r^{N-2}} \frac{d}{dr} \left(\frac{u'^{2}}{2} r^{2N-2} \right) dr = \lambda \int_{R}^{\infty} R'(u) r^{N} u' dr - \int_{R}^{\infty} u r^{N} u' dr,$$

and by integration by parts we have

$$\frac{u'^{2}(R)R^{N}}{2} + (2-N)\int_{R}^{\infty} \frac{u'^{2}}{2}r^{N-1} dr = \lambda \int_{R}^{\infty} \frac{d}{dr} (R(u))r^{N} dr - \int_{R}^{\infty} \frac{d}{dr} (\frac{1}{2}|u|^{2})r^{N} dr,$$

and hence

$$\frac{u^{\prime 2}(R)R^{N}}{2} + \frac{2-N}{2} \int_{\Omega} |\nabla u|^{2} dx = -N\lambda \int_{\Omega} R(u) dx + \frac{N}{2} \int_{\Omega} |u|^{2} dx. \quad \Box$$

Lemma 2. Let $(\lambda_n, u_n) \in \mathbb{R} \times H^1_r(\Omega)$ be a sequence such that $\nabla I(\lambda_n, u_n) = 0$, $\lambda_n \to 1$ and $I(\lambda_n, u_n)$ bounded. Then $||u_n||_{H^1_r(\Omega)}$ is bounded.

Proof. Step I: $||u_n||_{D^{1,2}(\Omega)}$ is bounded. We have thanks to Lemma 1

$$\left(\frac{1}{2}\int_{\Omega} \left(|\nabla u_{n}|^{2} + |u_{n}|^{2}\right) \mathrm{d}x - \lambda_{n} \int_{\Omega} R(u_{n}) \mathrm{d}x \leqslant K, \\
\frac{u_{n}^{\prime 2}(R)R^{N}}{2N} + \frac{2-N}{2N} \int_{\Omega} |\nabla u_{n}|^{2} \mathrm{d}x = -\lambda_{n} \int_{\Omega} R(u_{n}) \mathrm{d}x + \frac{1}{2} \int_{\Omega} |u_{n}|^{2} \mathrm{d}x.$$
(9)

By adding the equations we get

$$\frac{u_n'^2(R)R^N}{2N} + \frac{1}{N}\int_{\Omega} |\nabla u_n|^2 \,\mathrm{d} x \leqslant K.$$

Step II: $||u_n||_{L^2(\Omega)}$ is bounded. Thanks to (2) and the interpolation inequality we have

$$I(\lambda_n, u_n) \ge \frac{1}{2} \|u_n\|_{H^1_r(\Omega)}^2 - c_1 \lambda_n \|u_n\|_{L^2(\Omega)}^{\alpha_1 p} \|u_n\|_{L^{2^*}(\Omega)}^{(1-\alpha_1)p} - c_2 \lambda_n \|u_n\|_{L^2(\Omega)}^{\alpha_2 q} \|u_n\|_{L^{2^*}(\Omega)}^{(1-\alpha_2)q},$$
(10)
where $\alpha_1 = \frac{N}{2} - \frac{N-2}{2}$ and $\alpha_2 = \frac{N}{2} - \frac{N-2}{2}$.

The Sobolev inequality gives $\alpha_1 = \frac{1}{p} - \frac{1}{2}$

$$I(\lambda_n, u_n) \ge \frac{1}{2} \|u_n\|_{H^1_r(\Omega)}^2 - c_1 \lambda_n \|u_n\|_{L^2(\Omega)}^{\alpha_1 p} \|u_n\|_{D^{1,2}(\Omega)}^{(1-\alpha_1)p} - c_2 \lambda_n \|u_n\|_{L^2(\Omega)}^{\alpha_2 q} \|u_n\|_{D^{1,2}(\Omega)}^{(1-\alpha_2)q}.$$
(11)

The fact that $\alpha_1 p < 2$ and $\alpha_2 q < 2$ for any p, q > 2 proves the boundness of $||u_n||_{L^2(\Omega)}$. \Box

Proof of the main theorem. Let u_n be a sequence such that $\nabla I(\lambda_n, u_n) = 0$, $\lambda_n \to 1$ and $I(\lambda_n, u_n)$ bounded. The existence of such sequence is proved in [5]. The a priori estimate for u_n is given by Lemma 2. There exist \bar{u} such that $u_n \to \bar{u}$ a.e. and by Strauss theorem [6] we have up to subsequences $||u_n - \bar{u}||_{L^p(\Omega)} = o(1)$ for 2 . We have

$$-\Delta u_n + u_n - R'(u_n) = \lambda_n R'(u_n) - R'(u_n) = o(1) \quad \text{in } H^{-1}(\Omega),$$
(12)

and hence u_n is a Palais–Smale sequence for the functional *I*. Indeed by (2) we have

$$\left| \int_{\Omega} (\lambda_n - 1) R'(u_n) \varphi \, \mathrm{d}x \right| \leq |\lambda_n - 1| \left(c_1 \int_{\Omega} |u_n|^{p-1} |\varphi| \, \mathrm{d}x + c_2 \int_{\Omega} |u_n|^{q-1} |\varphi| \, \mathrm{d}x \right), \tag{13}$$

and hence

$$\left| \int_{\Omega} (\lambda_n - 1) R'(u_n) \varphi \, \mathrm{d}x \right| \leq |\lambda_n - 1| \left(c_1 \| u_n \|_{H^1(\Omega)}^{p-1} \| \varphi \|_{H^1(\Omega)} + c_2 \| u_n \|_{H^1(\Omega)}^{q-1} \| \varphi \|_{H^1(\Omega)} \right). \tag{14}$$

Let us consider two functions u_n and u_m in the PS sequence, by subtraction we get

$$-\Delta(u_n - u_m) + (u_n - u_m) - (R'(u_n) - R'(u_m)) \to 0,$$
(15)

and we obtain

$$\int_{\Omega} |\nabla(u_n - u_m)|^2 \, \mathrm{d}x + \int_{\Omega} |(u_n - u_m)|^2 \, \mathrm{d}x - \int_{\Omega} (R'(u_n) - R'(u_m))(u_n - u_m) \, \mathrm{d}x = o(1).$$
(16)

Indeed by (2) we have

$$\int_{\Omega} \left| \left(R'(u_n) - R'(u_m) \right) (u_n - u_m) \right| dx \leq c_1 \left(\int_{\Omega} |u_n|^{p-1} |u_n - u_m| dx + \int_{\Omega} |u_m|^{p-1} |u_n - u_m| dx \right) + c_2 \left(\int_{\Omega} |u_n|^{q-1} |u_n - u_m| dx + \int_{\Omega} |u_m|^{q-1} |u_n - u_m| dx \right) = o(1).$$
(17)

Eventually we have

$$\int_{\Omega} \left| \nabla (u_n - u_m) \right|^2 \mathrm{d}x + \int_{\Omega} \left| (u_n - u_m) \right|^2 \mathrm{d}x \to 0,\tag{18}$$

i.e. u_n is a Cauchy sequence in $H^1_r(\Omega)$. We obtain $||u_n - \bar{u}||_{H^1_r(\Omega)} = o(1)$. \Box

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.

- [2] A. Azzollini, A. Pomponio, On the Schrödinger equation in \mathbb{R}^N under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (3) (2009) 1361–1378.
- [3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1982) 313-345.
- [4] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation in R^N, Indiana Univ. Math. J. 54 (2) (2005) 443-464.
- [5] M. Lucia, A mountain pass theorem without Palais-Smale condition, C. R. Math. Acad. Sci. Paris, Ser. I 341 (5) (2005) 287-291.
- [6] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (2) (1977) 149-162.