Partial Differential Equations

Existence of solutions for semilinear elliptic problems in exterior of ball

Existence des solutions pour des problèmes elliptiques non linéaires à extérieur de la boule

Jacopo Bellazzini

Dipartimento di Matematica Applicata Università di Pisa, Via Buonarroti 1/C, 56127 Pisa, Italy

A R T I CLE IN F O

Article history:

Received 12 February 2010
Accepted after revision 18 March 2010
Available online 24 April 2010
Presented by Haïm Brezis

A B S T R A CT

We prove the existence of solutions for the semilinear elliptic problem in $\Omega=B(0, R)^{c}$, $N \geqslant 3$.

$$
-\Delta u=G^{\prime}(u)
$$

under suitable general assumptions on the nonlinear term G.
(C) 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É
Dans cette Note, nous demontrons l'existence d'une solution pour des équation elliptiques non linéaires in $\Omega=B(0, R)^{c}, N \geqslant 3$

$$
-\Delta u=G^{\prime}(u)
$$

pour a general nonlinéarité G.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In this Note we consider the semilinear elliptic problem in the exterior of a ball, $N \geqslant 3$

$$
\begin{cases}-\Delta u=G^{\prime}(u) & \text { on } \Omega=B(0, R)^{c}, \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $B(0, R)^{c}=\left\{x \in \mathbb{R}^{N}\right.$ such that $\left.|x|>R\right\}$ and $G=-\frac{1}{2} u^{2}+R(u) \in C^{2}$ fulfill the hypotheses

$$
\begin{equation*}
\left|R^{\prime}(u)\right| \leqslant c_{1}|u|^{p-1}+c_{2}|u|^{q-1} 2<p \leqslant q<\frac{2 N}{N-2} \tag{2}
\end{equation*}
$$

there exists $\xi_{0}>0$ s.t. $G\left(\xi_{0}\right)>0$.
Eq. (1) has been intensively studied in case $\Omega=\mathbb{R}^{N}$, see e.g. [3], and in case Ω bounded domain with regular boundary for a wide class of nonlinearities, see e.g. [1]. Eq. (1) is the Euler-Lagrange equation associated to the following functional $I: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ given by

[^0]\[

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2}-\int R(u) \mathrm{d} x \tag{4}
\end{equation*}
$$

\]

It is well known that the functional $I(u)$ exhibits a mountain pass geometry (see Proposition 1) and in this scenario the classical deformation lemma asserts that a Palais-Smale sequence (PS) exists at critical level c. The first and crucial difficulty is to give an a priori estimate on the Palais-Smale sequence, i.e. to prove that u_{n} is bounded in $H_{0}^{1}(\Omega)$ in case of general nonlinearity not fulfilling the classical Ambrosetti-Rabinowitz condition.

In an abstract framework, given an Hilbert space H let we consider the family of functionals that shows a mountain pass geometry for $\lambda=1$

$$
\begin{equation*}
I(\lambda, u)=\frac{1}{2}\|u\|_{H}^{2}-\lambda J(u) \tag{5}
\end{equation*}
$$

where $J \in C^{2}(H, \mathbb{R})$ and $\lambda \in \mathbb{R}^{+}$and $\nabla J: H \rightarrow H$ is a compact mapping.
Theorem 1.1 of [5] states that there exists a sequence $\left(\lambda_{n}, u_{n}\right) \in \mathbb{R} \times H$ such that

$$
\left\{\begin{array}{l}
u_{n} \text { is a critical point of } I\left(\lambda_{n}, u\right) \lambda_{n} \rightarrow 1 \tag{6}\\
I\left(\lambda_{n}, u_{n}\right) \text { bounded. }
\end{array}\right.
$$

As a matter of fact the existence of a sequence u_{n} of solution for the approximated problem does not guarantee in general that we can pass to the limit and prove that a solution for the case $\lambda=1$ exists. The main difficulty is again the a priori estimate on the approximated solutions u_{n}. In some cases, a Pohozaev type identity applied to the approximated problem, guarantees the boundness of the u_{n} sequence and then the existence of a solution for the original problem, see e.g. [4] and [2] in the case of nonlinear Schrödinger equation in R^{N}.

In this Note we show that a Pohozaev type identity for the perturbed equation exists and that this constraint gives the boundness of the perturbed solutions. Therefore, under the above mentioned hypotheses we have the following

Theorem 1 (main theorem). If (2), (3) hold then functional (4) has a mountain pass critical point.
In order to prove the main theorem we define the perturbed functional $I(\lambda,):. H_{r}^{1}(\Omega) \rightarrow \mathbb{R}$

$$
\begin{equation*}
I(\lambda, u)=\frac{1}{2}\|u\|_{H^{1}(\Omega)}^{2}-\lambda \int R(u) \mathrm{d} x \tag{7}
\end{equation*}
$$

where the nonlinear term is weakly continuous in

$$
H_{r}^{1}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \text { such that } u \text { radially symmetric }\right\} .
$$

Before to prove the main theorem some preliminaries are in order:
Proposition 1. If (2), (3) hold then functional (4) has a mountain pass geometry.
Proof. We notice simply that

$$
I(u) \geqslant \frac{1}{2}\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}^{2}-c_{1}\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}^{p}-c_{2}\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}^{q}
$$

and that the sequence u_{n} defined as follows

$$
u_{n}(r)= \begin{cases}\xi_{0}\left(|x|-R_{n}+1\right) & \text { for } R_{n}-1 \leqslant|x| \leqslant R_{n} \\ \xi_{0} & \text { for } R_{n} \leqslant|x| \leqslant 2 R_{n} \\ \xi_{0}\left(2 R_{n}-|x|+1\right) & \text { for } 2 R_{n} \leqslant|y| \leqslant 2 R_{n}+1 \\ 0 & \text { for }|x| \geqslant 2 R_{n}+1\end{cases}
$$

where ξ_{0} is defined in (3) fulfills $I\left(u_{n}\right)<0$ for $R_{n} \rightarrow \infty$. Indeed

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x=O\left(R_{n}^{N-1}\right)
$$

and

$$
\int_{\Omega} G\left(u_{n}\right) \mathrm{d} x=\int_{R_{n}}^{2 R_{n}} r^{N-1} G\left(\xi_{0}\right) \mathrm{d} r+O\left(R_{n}^{N-1}\right)=C G\left(\xi_{0}\right) R_{n}^{N}+O\left(R_{n}^{N-1}\right)
$$

Since $G\left(\xi_{0}\right)>0$ it follows that $I\left(u_{n}\right)$ is negative for n large enough.
We show now a Pohozaev type identity that is crucial for the a priori estimate.

Lemma 1. Let u be a solution of

$$
-\Delta u+u=\lambda R^{\prime}(u) \quad \text { on } \Omega=B(0, R)^{c}
$$

then we have

$$
\frac{u^{\prime 2}(R) R^{N}}{2}+\frac{2-N}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x=-\lambda N \int_{\Omega} R(u) \mathrm{d} x+\frac{N}{2} \int_{\Omega}|u|^{2} \mathrm{~d} x
$$

Proof. We write (1) using the radial symmetry of the solution

$$
\begin{equation*}
-u^{\prime \prime}-\frac{N-1}{r} u^{\prime}+u=\lambda R^{\prime}(u) \tag{8}
\end{equation*}
$$

then we have

$$
-\frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{u^{\prime 2}}{2} r^{2 N-2}\right)=\left(\lambda R^{\prime}(u)-u\right) r^{2 N-2} u^{\prime}
$$

We get

$$
-\int_{R}^{\infty} \frac{1}{r^{N-2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{u^{\prime 2}}{2} r^{2 N-2}\right) \mathrm{d} r=\lambda \int_{R}^{\infty} R^{\prime}(u) r^{N} u^{\prime} \mathrm{d} r-\int_{R}^{\infty} u r^{N} u^{\prime} \mathrm{d} r
$$

and by integration by parts we have

$$
\frac{u^{\prime 2}(R) R^{N}}{2}+(2-N) \int_{R}^{\infty} \frac{u^{\prime 2}}{2} r^{N-1} \mathrm{~d} r=\lambda \int_{R}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} r}(R(u)) r^{N} \mathrm{~d} r-\int_{R}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} r}\left(\frac{1}{2}|u|^{2}\right) r^{N} \mathrm{~d} r
$$

and hence

$$
\frac{u^{\prime 2}(R) R^{N}}{2}+\frac{2-N}{2} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x=-N \lambda \int_{\Omega} R(u) \mathrm{d} x+\frac{N}{2} \int_{\Omega}|u|^{2} \mathrm{~d} x
$$

Lemma 2. Let $\left(\lambda_{n}, u_{n}\right) \in \mathbb{R} \times H_{r}^{1}(\Omega)$ be a sequence such that $\nabla I\left(\lambda_{n}, u_{n}\right)=0, \lambda_{n} \rightarrow 1$ and $I\left(\lambda_{n}, u_{n}\right)$ bounded. Then $\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}$ is bounded.

Proof. Step I: $\left\|u_{n}\right\|_{D^{1,2}(\Omega)}$ is bounded. We have thanks to Lemma 1

$$
\left\{\begin{array}{l}
\frac{1}{2} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+\left|u_{n}\right|^{2}\right) \mathrm{d} x-\lambda_{n} \int_{\Omega} R\left(u_{n}\right) \mathrm{d} x \leqslant K \tag{9}\\
\frac{u_{n}^{\prime 2}(R) R^{N}}{2 N}+\frac{2-N}{2 N} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x=-\lambda_{n} \int_{\Omega} R\left(u_{n}\right) \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left|u_{n}\right|^{2} \mathrm{~d} x .
\end{array}\right.
$$

By adding the equations we get

$$
\frac{u_{n}^{\prime 2}(R) R^{N}}{2 N}+\frac{1}{N} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \leqslant K
$$

Step II: $\left\|u_{n}\right\|_{L^{2}(\Omega)}$ is bounded.
Thanks to (2) and the interpolation inequality we have

$$
\begin{equation*}
I\left(\lambda_{n}, u_{n}\right) \geqslant \frac{1}{2}\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}^{2}-c_{1} \lambda_{n}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{\alpha_{1} p}\left\|u_{n}\right\|_{L^{2^{*}}(\Omega)}^{\left(1-\alpha_{1}\right) p}-c_{2} \lambda_{n}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{\alpha_{2} q}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{\left(1-\alpha_{2}\right) q}, \tag{10}
\end{equation*}
$$

where $\alpha_{1}=\frac{N}{p}-\frac{N-2}{2}$ and $\alpha_{2}=\frac{N}{q}-\frac{N-2}{2}$.
The Sobolev inequality gives

$$
\begin{equation*}
I\left(\lambda_{n}, u_{n}\right) \geqslant \frac{1}{2}\left\|u_{n}\right\|_{H_{r}^{1}(\Omega)}^{2}-c_{1} \lambda_{n}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{\alpha_{1} p}\left\|u_{n}\right\|_{D^{1,2}(\Omega)}^{\left(1-\alpha_{1}\right) p}-c_{2} \lambda_{n}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{\alpha_{2} q}\left\|u_{n}\right\|_{D^{1,2}(\Omega)}^{\left(1-\alpha_{2}\right) q} . \tag{11}
\end{equation*}
$$

The fact that $\alpha_{1} p<2$ and $\alpha_{2} q<2$ for any $p, q>2$ proves the boundness of $\left\|u_{n}\right\|_{L^{2}(\Omega)}$.

Proof of the main theorem. Let u_{n} be a sequence such that $\nabla I\left(\lambda_{n}, u_{n}\right)=0, \lambda_{n} \rightarrow 1$ and $I\left(\lambda_{n}, u_{n}\right)$ bounded. The existence of such sequence is proved in [5]. The a priori estimate for u_{n} is given by Lemma 2 . There exist \bar{u} such that $u_{n} \rightarrow \bar{u}$ a.e. and by Strauss theorem [6] we have up to subsequences $\left\|u_{n}-\bar{u}\right\|_{L^{p}(\Omega)}=o(1)$ for $2<p<\frac{2 N}{N-2}$. We have

$$
\begin{equation*}
-\Delta u_{n}+u_{n}-R^{\prime}\left(u_{n}\right)=\lambda_{n} R^{\prime}\left(u_{n}\right)-R^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{-1}(\Omega) \tag{12}
\end{equation*}
$$

and hence u_{n} is a Palais-Smale sequence for the functional I. Indeed by (2) we have

$$
\begin{equation*}
\left|\int_{\Omega}\left(\lambda_{n}-1\right) R^{\prime}\left(u_{n}\right) \varphi \mathrm{d} x\right| \leqslant\left|\lambda_{n}-1\right|\left(c_{1} \int_{\Omega}\left|u_{n}\right|^{p-1}|\varphi| \mathrm{d} x+c_{2} \int_{\Omega}\left|u_{n}\right|^{q-1}|\varphi| \mathrm{d} x\right), \tag{13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|\int_{\Omega}\left(\lambda_{n}-1\right) R^{\prime}\left(u_{n}\right) \varphi \mathrm{d} x\right| \leqslant\left|\lambda_{n}-1\right|\left(c_{1}\left\|u_{n}\right\|_{H^{1}(\Omega)}^{p-1}\|\varphi\|_{H^{1}(\Omega)}+c_{2}\left\|u_{n}\right\|_{H^{1}(\Omega)}^{q-1}\|\varphi\|_{H^{1}(\Omega)}\right) . \tag{14}
\end{equation*}
$$

Let us consider two functions u_{n} and u_{m} in the PS sequence, by subtraction we get

$$
\begin{equation*}
-\Delta\left(u_{n}-u_{m}\right)+\left(u_{n}-u_{m}\right)-\left(R^{\prime}\left(u_{n}\right)-R^{\prime}\left(u_{m}\right)\right) \rightarrow 0 \tag{15}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{n}-u_{m}\right)\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\left(u_{n}-u_{m}\right)\right|^{2} \mathrm{~d} x-\int_{\Omega}\left(R^{\prime}\left(u_{n}\right)-R^{\prime}\left(u_{m}\right)\right)\left(u_{n}-u_{m}\right) \mathrm{d} x=o(1) \tag{16}
\end{equation*}
$$

Indeed by (2) we have

$$
\begin{align*}
\int_{\Omega}\left|\left(R^{\prime}\left(u_{n}\right)-R^{\prime}\left(u_{m}\right)\right)\left(u_{n}-u_{m}\right)\right| \mathrm{d} x \leqslant & c_{1}\left(\int_{\Omega}\left|u_{n}\right|^{p-1}\left|u_{n}-u_{m}\right| \mathrm{d} x+\int_{\Omega}\left|u_{m}\right|^{p-1}\left|u_{n}-u_{m}\right| \mathrm{d} x\right) \\
& +c_{2}\left(\int_{\Omega}\left|u_{n}\right|^{q-1}\left|u_{n}-u_{m}\right| \mathrm{d} x+\int_{\Omega}\left|u_{m}\right|^{q-1}\left|u_{n}-u_{m}\right| \mathrm{d} x\right)=o(1) \tag{17}
\end{align*}
$$

Eventually we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(u_{n}-u_{m}\right)\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\left(u_{n}-u_{m}\right)\right|^{2} \mathrm{~d} x \rightarrow 0 \tag{18}
\end{equation*}
$$

i.e. u_{n} is a Cauchy sequence in $H_{r}^{1}(\Omega)$. We obtain $\left\|u_{n}-\bar{u}\right\|_{H_{r}^{1}(\Omega)}=o(1)$.

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) $349-381$.
[2] A. Azzollini, A. Pomponio, On the Schrödinger equation in \mathbb{R}^{N} under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (3) (2009) 13611378.
[3] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1982) 313-345.
[4] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation in R^{N}, Indiana Univ. Math. J. 54 (2) (2005) 443-464.
[5] M. Lucia, A mountain pass theorem without Palais-Smale condition, C. R. Math. Acad. Sci. Paris, Ser. I 341 (5) (2005) 287-291.
[6] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (2) (1977) 149-162.

[^0]: E-mail address: j.bellazzini@ing.unipi.it.

