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polynomials on arbitrary compacta in C\£2 that have connected complement. This note
Presented by Jean-Pierre Kahane shows that this phenomenon can break down for non-simply connected domains £2, even
when C\$2 is compact. This answers a question of Melas and disproves a conjecture of
Miiller, Vlachou and Yavrian.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Il est connu que, pour un sous-domaine propre simplement connexe §2 du plan complexe
et un point quelconque ¢ de £2, il y a des fonctions holomorphes sur §2 qui possédent
des séries de Taylor «universelles» autour de ¢; c'est-a-dire tout polynéme peut étre
approximé, sur tout compact de C\£2 ayant un complémentaire connexe, par les sommes
partielles de la série de Taylor. Cette note montre que ce résultat n’est plus vrai en général
pour les domaines non-simplement connexes §2, méme lorsque C\£2 est compact. Cela
répond a une question de Melas et réfute une conjecture de Miiller, Vlachou et Yavrian.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let §2 be a proper subdomain of the complex plane C and let ¢ € £2. A function f on 2 is said to belong to the
collection U ($2, ¢), of holomorphic functions on §2 with universal Taylor series expansions about ¢, if the partial sums

f™@)
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SN, O@ =)

n=0
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of the Taylor series have the following property:

For every compact set K C C\$2 with connected complement and every function g which is continuous on K and holomorphic
on K°, there is a subsequence (Sn, (f, ¢)) that converges to g uniformly on K.
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Nestoridis [17,18] has shown that U(£2, ¢) # @ for any simply connected domain £2 and any ¢ € £2. (The corresponding
result, where K is required to be disjoint from £2, had previously been established by Luh [12] and Chui and Parnes [4].)
In fact, Nestoridis showed that possession of such universal Taylor series expansions is a generic property of holomorphic
functions on simply connected domains 2, in the sense that U(2, ¢) is a dense Gs subset of the space of all holomorphic
functions on £2 endowed with the topology of local uniform convergence (see also Melas and Nestoridis [14] and the survey
of Kahane [11]).

The situation when £2 is non-simply connected is much less well understood, despite much recent research: see, for
example [2,3,5-7,9,13,15,19,22-25]. Melas [13] (see also Costakis [5]) has shown that U(£2,¢) # @ for any ¢ € £2 whenever
C\$2 is compact and connected, and has asked if U(§2,¢) can be empty when C\$2 is compact but disconnected. On the
other hand, Miiller, Vlachou and Yavrian [15] have shown, for non-simply connected domains 2, that thinness of the set
C\$2 at infinity is necessary for U(S2, ¢) to be non-empty, and have conjectured that this condition is also sufficient. There
is clearly a large gap between the results of [13] and [15]. Also there has been no known example of a domain §2 and
points ¢1, &> € £2 such that U(£2,¢1) # % and U(£2, &) = 0.

The purpose of this Note is to establish the following result. We denote by D(a,r) the open disc of centre a and radius r,
and write D = D(0, 1). By a non-degenerate continuum we mean a connected compact set containing more than one element.

Theorem 1. Let 2 be a domain of the form C\ (L U {1}), where L is a non-degenerate continuum in C\ID. Then U (£2, 0) = ¢.

The conjecture of Miiller, Vlachou and Yavrian is thus disproved. Also, if we take L to be D(—5/3,1/3), then U(£2,0) = ¢
by Theorem 1 and yet a result of the second author [22] tells us that U(£2, —1/2) # @ (see also Costakis and Vlachou [7]).
Thus we now have an example of a domain where the existence of functions with universal Taylor series depends on the
chosen centre for expansion. The result of Melas, that U(£2,0) # ¢ if C\$2 is compact and connected, is now seen to be
sharp in the sense that, by Theorem 1, it can fail with the removal of one additional point from the domain. Theorem 1
fails if L is allowed to be a singleton [13].

2. Proof

Let £2 be as in the statement of Theorem 1, and suppose, for the sake of contradiction, that there exists a function f in
U($2,0). We can write f =g+ h, where g is the singular part of the Laurent expansion of f associated with the singularity
at 1, and h is holomorphic on C\L. We denote the Taylor coefficients of g and h about 0 by (a,) and (by), respectively.
Since (Sy(f,0)(1)) is dense in C and (Sy(h, 0)(1)) converges, we see that g is non-zero.

Let p =inf{|z|: z€ L} and 0 <8 < & < p — 1. The Taylor series for g and h about 0 converge absolutely in D and D (0, p),
respectively, so we can define the finite quantities
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s Z(1+a)n Bs Z|n|<1+5)
n=0 n=0
Since f € U($2,0), we can choose a strictly increasing sequence (Nj) of natural numbers such that
SN, (8,0)(2) + SN, (h,0)(z2) - 0 ask — oo, uniformly on L. (1)
On D(0, p(1 +¢)) we have
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so by (1) we can choose ko such that
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We also have
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where y5; = max{as, Bs + 1} and
Ae =D(0,1+&)U[LND(0, p(1+8))].
Let G, denote the Green function for the domain D, = (C U {oco})\Ae with pole at infinity. Then
Ge(z) —log|z| - —logC(Ae) (|z| — ),
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where C(A) denotes the logarithmic capacity of a set A (see Section 5.8 of [1], or Section 5.2 of [21]). Thus we can choose
rs.e > max{|z|: z € L} such that

Ge(2) <loglz| —logC(Ae) +8 (|2 >15.). (3)
Bernstein’s lemma (Theorem 5.5.7 in [21]) tells us that any polynomial q of degree n > 1 satisfies

1/n
<M> <e% @ (ze Dg\{oo}).

maxa, |q|

Applying this inequality to the polynomial Sy, (g, 0), and using (2) and then (3), we obtain
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We next adapt an argument from pp. 498, 499 of Gehlen [8]. Let v € (0, 1). Since
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we obtain

1/v-1
_ {A+e)A+8)e}/r
limsup max |a,|'" < 5.
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Since L is a non-degenerate continuum that intersects {|z| = p}, we have
Cc(LND(0,p(1+¢))) >0

and so
C(Ae) >C(D(0,148))=1+e¢.

We can thus choose § sufficiently small that (14 &)(1 + 8)e® < C(Ag), and then choose v sufficiently close to 1 to ensure
that A < 1.

Finally, we will apply an observation of Miiller (see Remark 2 in [16]). Since the function g has its only singularity at 1
and vanishes at co, Wigert’s theorem (Theorem 11.2.2 in Hille [10]) tells us that there is an entire function F of exponential
type 0 such that F(n) =a, for all n > 0. However, Theorem V of Pélya [20] says that, for any w > 0, however small, such a
function F has the property that the sequence {n € N: |F(n)| > e #"} is of density 1. This contradicts (4) with A < 1. Thus
our original assumption, that there exists f in U(£2, 0), must be false, and the proof of the theorem is complete. O

Remarks.

(1) The assumption that L is a continuum can be relaxed. It is enough to suppose that L is a compact subset of C\D
such that C(D(0, p?) NL) > 0 where p =inf{|z|: zeL}.

(2) The proof actually shows that there is no holomorphic function f on £ such that (Sy(f,0)) is divergent at z=1
and has a subsequence that is uniformly bounded on L.
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