Geometry

An improved method for establishing Fuss' relations for bicentric polygons

Une méthode améliorée pour démontrer les relations de Fuss des polygones bicentriques

Mirko Radić
Department of Mathematics, University of Rijeka, Omladinska 14, Rijeka, Croatia

ARTICLE INFO

Article history:

Received 20 April 2009
Accepted after revision 17 February 2010
Available online 5 March 2010
Presented by Étienne Ghys

Abstract

This Note presents an improved method for proving Fuss' relations for bicentric n-gons where $n \geqslant 3$ is an odd integer. Several yet unknown Fuss type relations are established. The Note can be considered as a complement to one of our earlier articles on the same subject. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Ce travail présente une méthode améliorée pour démontrer les relations de Fuss pour des polygones bicentriques à n côtés, ou $n \geqslant 3$ est un nombre entier impair. Nous établissons des relations analogues à celles de Fuss, qui ne semblaient pas connues à ce jour. La note est un complément à un de nos articles antérieurs sur le même sujet.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Although Poncelet's celebrated closure theorem [4] dates from the nineteenth century, many mathematicians have worked on a number of problems related to this inspiring result, which can be stated as follows. Let C and D be two nested conics such that there is an n-sided polygon inscribed in D and circumscribed around C. Then, for every point x on D there is an n-sided polygon inscribed in D and circumscribed around C such that the point x is one of its vertices. Hence, for every starting point x there is a polygon with the same n-periodicity.

In this article we restrict ourselves to the case when the conics are circles. The pair of conics C and D can be taken to be a pair of circles by a projective transformation. Let us denote by C_{1} and C_{2} the resulting circles, and let R, r and d be, respectively, the radius of C_{2}, the radius of C_{1}, and the distance between the centers of C_{1} and C_{2}. The n-periodicity of Poncelet's configuration then implies algebraic relations on R, r and d. For $n \leqslant 8$, these relations were found by N . Fuss $[2,3]$ and they are referred to as Fuss' relations for all values of n. A general condition on n-periodicity in terms of given conics is the content of the important Cayley's theorem [1] (which implies Fuss' relations; however the deduction of the later from the former may be a non-trivial task).

The present article primarily deals with one way of establishing Fuss' relations corresponding to the same value of n but different rotation numbers of Poncelet's n-gons. A key role is played in our argument by a certain partition of the rotation numbers for n, which allows one to relatively easily deduce Fuss' relations.

[^0]
2. One way of establishing Fuss' relations

The following notation will be used. We shall denote by

$$
\begin{equation*}
F_{n}^{(k)}(R, r, d)=0 \tag{1}
\end{equation*}
$$

Fuss' relation for bicentric n-gons where the rotation number for n is k. Let (R_{k}, r_{k}, d_{k}) be a solution of the above relation. We then denote by $\hat{R}_{k}, \hat{r}_{k}, \hat{d}_{k}$ the lengths (which are, in fact, positive numbers) such that

$$
\begin{equation*}
\left(\hat{R}_{k}, \hat{r}_{k}, \hat{d}_{k}\right)=\left(\frac{R_{k}^{2}-d_{k}^{2}}{2 r_{k}}, \sqrt{-\left(R_{k}^{2}+d_{k}^{2}-r_{k}^{2}\right)+\left(\frac{R_{k}^{2}-d_{k}^{2}}{2 r_{k}}\right)^{2}+\left(\frac{2 R_{k} r_{k} d_{k}}{R_{k}^{2}-d_{k}^{2}}\right)^{2}}, \frac{2 R_{k} r_{k} d_{k}}{R_{k}^{2}-d_{k}^{2}}\right) . \tag{2}
\end{equation*}
$$

Let $n \geqslant 3$ be an odd integer and let us denote by \mathbb{S} the set given by

$$
\begin{equation*}
\mathbb{S}=\left\{x: x \in\left\{1,2, \ldots, \frac{n-1}{2}\right\} \text { and } G C D(x, n)=1\right\} \tag{3}
\end{equation*}
$$

Definition 2.1. Let $f: \mathbb{S} \rightarrow \mathbb{S}$ be the function defined by

$$
\begin{equation*}
f(x)=2 x \quad \text { if } 2 x \in \mathbb{S}, \quad \text { and } \quad f(x)=n-2 x \quad \text { if } 2 x \notin \mathbb{S} . \tag{4}
\end{equation*}
$$

Theorem 2.2. The function f is a one-to-one mapping from \mathbb{S} to \mathbb{S}.
Proof. It is easy to see that $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$. If $k \in \mathbb{S}$ is even, then the equation $2 x=k$ has a solution in \mathbb{S}, whereas if k is odd, then the equation $k=n-2 x$ has a solution in \mathbb{S}.

Thus the function f induces a partition of the set \mathbb{S}.
For example, if $n=17$, then the partition of the set $\mathbb{S}=\{1, \ldots, 8\}$ has two cosets: $C_{1}=\{1,2,4,8\}$ and $C_{2}=\{3,5,6,7\}$, since in this case

$$
\begin{array}{llll}
f(1)=2, & f(2)=4, & f(4)=8, & f(8)=1, \\
f(3)=6, & f(6)=5, & f(5)=7, & f(7)=3 . \tag{6}
\end{array}
$$

Of course, the function f determines one (cyclic) ordering of the elements in each coset. For the sake of brevity, we shall write $x \rightarrow y$ instead of $f(x)=y$. Thus, if $n=17$, then instead of (5) and (6) we write the orderings $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 1$ and $3 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 3$.

Also, for brevity, we shall often write \hat{x} instead of $f(x)$.
As will be seen, the ordering determined by the function f has very interesting and important properties concerning bicentric polygons. Namely, the following conjecture is strongly suggested:

Conjecture 2.3. Let R_{k}, r_{k}, d_{k} and $\hat{R}_{k}, \hat{r}_{k}, \hat{d}_{k}$ be such that (2) holds. Then,

$$
\begin{equation*}
\left(\hat{R}_{k}, \hat{r}_{k}, \hat{d}_{k}\right)=\left(R_{\hat{k}}, r_{\hat{k}}, d_{\hat{k}}\right), \quad \text { that is, } \frac{R_{k}^{2}-d_{k}^{2}}{2 r_{k}}=R_{f(k)}, \text { and so on. } \tag{7}
\end{equation*}
$$

In [5, Theorems $1,3,4$] we have proved this conjecture for $n=3,5,7,9$. So for $n=5$, since $\hat{1}=2$ and $\hat{2}=1$, we have the relations

$$
\begin{equation*}
\left(\hat{R}_{1}, \hat{r}_{1}, \hat{d}_{1}\right)=\left(R_{2}, r_{2}, d_{2}\right) \quad \text { and } \quad\left(\hat{R}_{2}, \hat{r}_{2}, \hat{d}_{2}\right)=\left(R_{1}, r_{1}, d_{1}\right) \tag{8}
\end{equation*}
$$

We have also proved that

$$
\begin{align*}
& R_{1}\left(R_{1}-r_{1}+\sqrt{\left(R_{1}-r_{1}\right)^{2}-d_{1}^{2}}\right)=R_{2}^{2} \tag{9}\\
& R_{2}\left(R_{2}+r_{2}+\sqrt{\left(R_{2}+r_{2}\right)^{2}-d_{2}^{2}}\right)=R_{1}^{2} \tag{10}
\end{align*}
$$

Generally, for each odd $n \geqslant 3$ for which Conjecture 2.3 is true, there are analogous relations

$$
\begin{align*}
& R_{1}\left(R_{1}-r_{1}+\sqrt{\left(R_{1}-r_{1}\right)^{2}-d_{1}^{2}}\right)=R_{\frac{n-1}{2}}^{2} \tag{11}\\
& R_{2}\left(R_{2}+r_{2}+\sqrt{\left(R_{2}+r_{2}\right)^{2}-d_{2}^{2}}\right)=R_{1}^{2}, \tag{12}
\end{align*}
$$

whose proof proceeds in the same way as that for $n=5,7,9$. Thus we have proved the following theorem:

Theorem 2.4. Conjecture 2.3 is true for odd $n=3,5,7,9,11,13,15,17$.
(For odd $n>17$ a powerful computer would be needed to ascertain the validity of Conjecture 2.3.)
Now we shall show how, using relation (11), one can establish Fuss' relation for bicentric n-gons whose rotation numbers for n are odd integers from the set \mathbb{S}. Let this relation be denoted by $F_{n}^{\langle 1\rangle}(R, r, d)=0$.

Without loss of generality we can take $n=17$ since essentially the same argument applies in all of the other cases. First we shall use the coset $C_{1}=\{1,2,4,8\}$, where $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 1$. In this case the right-hand side of (11) is R_{8}^{2}, and thanks to (2) and (7) it can be expressed by R_{1}, r_{1}, d_{1} using the following three substitutions:

$$
\left(R_{8}, r_{8}, d_{8}\right) \leftarrow\left(R_{4}, r_{4}, d_{4}\right) \leftarrow\left(R_{2}, r_{2}, d_{2}\right) \leftarrow\left(R_{1}, r_{1}, d_{1}\right)
$$

where the arrow \leftarrow is read: can be expressed by.
It is clear from the ordering $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 1$ that $\left(R_{1}, r_{1}, d_{1}\right)$ can be any solution of Fuss' relation $F_{17}^{(1)}(R, r, d)=0$. Hence the relation thus obtained from (11), taking $n=17$, is Fuss' relation $F_{17}^{(1)}(R, r, d)=0$, except that we wrote R, r, d instead of R_{1}, r_{1}, d_{1}.

Now we use the coset $C_{2}=\{3,5,6,7\}$, where $3 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 3$. Since in this case $7 \rightarrow 3$, we have the following relation:

$$
\begin{equation*}
R_{3}\left(R_{3}-r_{3}+\sqrt{\left(R_{3}-r_{3}\right)^{2}-d_{3}^{2}}\right)=R_{7}^{2} \tag{13}
\end{equation*}
$$

The term R_{7}^{2} can be expressed by R_{3}, r_{3}, d_{3} using the following three substitutions:

$$
\left(R_{7}, r_{7}, d_{7}\right) \leftarrow\left(R_{5}, r_{5}, d_{5}\right) \leftarrow\left(R_{6}, r_{6}, d_{6}\right) \leftarrow\left(R_{3}, r_{3}, d_{3}\right)
$$

It is clear from the ordering $3 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 3$ that $\left(R_{3}, r_{3}, d_{3}\right)$ can be any solution of Fuss' relation $F_{17}^{(3)}(R, r, d)=0$. Hence the relation thus obtained from (13) is Fuss' relation $F_{17}^{(3)}(R, r, d)=0$, except that we wrote R, r, d instead of R_{3}, r_{3}, d_{3}. In other words, Fuss' relation obtained for $8 \rightarrow 1$ is the same as Fuss' relation obtained for $7 \rightarrow 3$. In the same way, it can be seen that this also holds for $6 \rightarrow 5$ and $5 \rightarrow 7$. Hence the expression (relation) thus obtained is Fuss' relation for each of the rotation numbers $1,3,5,7$ for $n=17$. In the same way, it can also be seen that it analogously holds for rotation numbers $2,4,6,8$ for $n=17$. So, the relation (11) for $n=17$ can be called a generator for Fuss' relation for bicentric 17-gons with odd rotation numbers for $n=17$. Also, the relation (12) for $n=17$ can be called the generator for Fuss' relation for bicentric 17 -gons with even rotation numbers for $n=17$.

We remark that in all examples considered we have found that the following holds. If m and n are odd integers such that each coset obtained for m has the same number of elements as each coset obtained for n, then we obtain an expression that is Fuss' relation for both m and n. So, for example, this is valid for $m=7$ and $n=9$, and for $m=15$ and $n=17$. Thus, relations (11) and (12) can be generators for Fuss' relations for bicentric n-gons with different odd n. (It seems that there are many other interesting properties, but one would require a powerful computer to investigate these.)

Acknowledgement

The author wishes to express his gratitude to the referee for many useful remarks and suggestions.

References

[1] A. Cayley, Developments on the porism of the in-and-circum-scribed polygon, Philosophical Magazine VII (1854) 339-345.
[2] N. Fuss, De quadrilateris quibus circulum tam inscribere quam circumscribere licet, Nova Acta Academiæ Scientiarum Imperialis Petropolitanæ X (1797) 103-125.
[3] N. Fuss, De polygonis simmetrice irregularibus circulo simul inscriptis et circumscriptis, Nova Acta Academiæ Scientiarum Imperialis Petropolitanæ XIII (1798) 168-189.
[4] J.V. Poncelet, Traité des propriétés projectives des figures : ouvrage utile a qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain I, 2nd ed., Gauthier-Villars, Paris, 1865-1866, First ed. in 1822.
[5] M. Radić, Certain relations concerning bicentric polygons and 2-parametric presentation of Fuss' relations, Mathematica Pannonica 20 (2) (2009) 219248.

[^0]: E-mail address: mradic@ffri.hr.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.02.021

