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This Note presents an improved method for proving Fuss’ relations for bicentric n-gons
where n � 3 is an odd integer. Several yet unknown Fuss type relations are established.
The Note can be considered as a complement to one of our earlier articles on the same
subject.
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r é s u m é

Ce travail présente une méthode améliorée pour démontrer les relations de Fuss pour des
polygones bicentriques à n côtés, ou n � 3 est un nombre entier impair. Nous établissons
des relations analogues à celles de Fuss, qui ne semblaient pas connues à ce jour. La note
est un complément à un de nos articles antérieurs sur le même sujet.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Although Poncelet’s celebrated closure theorem [4] dates from the nineteenth century, many mathematicians have
worked on a number of problems related to this inspiring result, which can be stated as follows. Let C and D be two
nested conics such that there is an n-sided polygon inscribed in D and circumscribed around C . Then, for every point x on
D there is an n-sided polygon inscribed in D and circumscribed around C such that the point x is one of its vertices. Hence,
for every starting point x there is a polygon with the same n-periodicity.

In this article we restrict ourselves to the case when the conics are circles. The pair of conics C and D can be taken to
be a pair of circles by a projective transformation. Let us denote by C1 and C2 the resulting circles, and let R , r and d be,
respectively, the radius of C2, the radius of C1, and the distance between the centers of C1 and C2. The n-periodicity of
Poncelet’s configuration then implies algebraic relations on R , r and d. For n � 8, these relations were found by N. Fuss [2,3]
and they are referred to as Fuss’ relations for all values of n. A general condition on n-periodicity in terms of given conics is
the content of the important Cayley’s theorem [1] (which implies Fuss’ relations; however the deduction of the later from
the former may be a non-trivial task).

The present article primarily deals with one way of establishing Fuss’ relations corresponding to the same value of n but
different rotation numbers of Poncelet’s n-gons. A key role is played in our argument by a certain partition of the rotation
numbers for n, which allows one to relatively easily deduce Fuss’ relations.
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2. One way of establishing Fuss’ relations

The following notation will be used. We shall denote by

F (k)
n (R, r,d) = 0, (1)

Fuss’ relation for bicentric n-gons where the rotation number for n is k. Let (Rk, rk,dk) be a solution of the above relation.
We then denote by R̂k, r̂k, d̂k the lengths (which are, in fact, positive numbers) such that

(R̂k, r̂k, d̂k) =
(

R2
k − d2

k

2rk
,
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k
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)2

+
(

2Rkrkdk

R2
k − d2

k

)2

,
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k

)
. (2)

Let n � 3 be an odd integer and let us denote by S the set given by

S =
{

x: x ∈
{

1,2, . . . ,
n − 1

2

}
and GCD(x,n) = 1

}
. (3)

Definition 2.1. Let f : S → S be the function defined by

f (x) = 2x if 2x ∈ S, and f (x) = n − 2x if 2x /∈ S. (4)

Theorem 2.2. The function f is a one-to-one mapping from S to S.

Proof. It is easy to see that x1 �= x2 ⇒ f (x1) �= f (x2). If k ∈ S is even, then the equation 2x = k has a solution in S, whereas
if k is odd, then the equation k = n − 2x has a solution in S. �

Thus the function f induces a partition of the set S.
For example, if n = 17, then the partition of the set S = {1, . . . ,8} has two cosets: C1 = {1,2,4,8} and C2 = {3,5,6,7},

since in this case

f (1) = 2, f (2) = 4, f (4) = 8, f (8) = 1, (5)

f (3) = 6, f (6) = 5, f (5) = 7, f (7) = 3. (6)

Of course, the function f determines one (cyclic) ordering of the elements in each coset. For the sake of brevity, we shall
write x → y instead of f (x) = y. Thus, if n = 17, then instead of (5) and (6) we write the orderings 1 → 2 → 4 → 8 → 1
and 3 → 6 → 5 → 7 → 3.

Also, for brevity, we shall often write x̂ instead of f (x).
As will be seen, the ordering determined by the function f has very interesting and important properties concerning

bicentric polygons. Namely, the following conjecture is strongly suggested:

Conjecture 2.3. Let Rk, rk,dk and R̂k, r̂k, d̂k be such that (2) holds. Then,

(R̂k, r̂k, d̂k) = (Rk̂, rk̂,dk̂), that is,
R2

k − d2
k

2rk
= R f (k), and so on. (7)

In [5, Theorems 1, 3, 4] we have proved this conjecture for n = 3,5,7,9. So for n = 5, since 1̂ = 2 and 2̂ = 1, we have
the relations

(R̂1, r̂1, d̂1) = (R2, r2,d2) and (R̂2, r̂2, d̂2) = (R1, r1,d1). (8)

We have also proved that

R1
(

R1 − r1 +
√

(R1 − r1)2 − d2
1

) = R2
2, (9)

R2
(

R2 + r2 +
√

(R2 + r2)2 − d2
2

) = R2
1. (10)

Generally, for each odd n � 3 for which Conjecture 2.3 is true, there are analogous relations

R1
(

R1 − r1 +
√

(R1 − r1)2 − d2
1

) = R2
n−1

2
, (11)

R2
(

R2 + r2 +
√

(R2 + r2)2 − d2
2

) = R2
1, (12)

whose proof proceeds in the same way as that for n = 5,7,9. Thus we have proved the following theorem:
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Theorem 2.4. Conjecture 2.3 is true for odd n = 3,5,7,9,11,13,15,17.
(For odd n > 17 a powerful computer would be needed to ascertain the validity of Conjecture 2.3.)

Now we shall show how, using relation (11), one can establish Fuss’ relation for bicentric n-gons whose rotation numbers
for n are odd integers from the set S. Let this relation be denoted by F 〈1〉

n (R, r,d) = 0.
Without loss of generality we can take n = 17 since essentially the same argument applies in all of the other cases. First

we shall use the coset C1 = {1,2,4,8}, where 1 → 2 → 4 → 8 → 1. In this case the right-hand side of (11) is R2
8, and thanks

to (2) and (7) it can be expressed by R1, r1,d1 using the following three substitutions:

(R8, r8,d8) ← (R4, r4,d4) ← (R2, r2,d2) ← (R1, r1,d1),

where the arrow ← is read: can be expressed by.
It is clear from the ordering 1 → 2 → 4 → 8 → 1 that (R1, r1,d1) can be any solution of Fuss’ relation F (1)

17 (R, r,d) = 0.

Hence the relation thus obtained from (11), taking n = 17, is Fuss’ relation F (1)
17 (R, r,d) = 0, except that we wrote R, r,d

instead of R1, r1,d1.
Now we use the coset C2 = {3,5,6,7}, where 3 → 6 → 5 → 7 → 3. Since in this case 7 → 3, we have the following

relation:

R3
(

R3 − r3 +
√

(R3 − r3)2 − d2
3

) = R2
7. (13)

The term R2
7 can be expressed by R3, r3,d3 using the following three substitutions:

(R7, r7,d7) ← (R5, r5,d5) ← (R6, r6,d6) ← (R3, r3,d3).

It is clear from the ordering 3 → 6 → 5 → 7 → 3 that (R3, r3,d3) can be any solution of Fuss’ relation F (3)
17 (R, r,d) = 0.

Hence the relation thus obtained from (13) is Fuss’ relation F (3)
17 (R, r,d) = 0, except that we wrote R, r,d instead of R3, r3,d3.

In other words, Fuss’ relation obtained for 8 → 1 is the same as Fuss’ relation obtained for 7 → 3. In the same way, it can be
seen that this also holds for 6 → 5 and 5 → 7. Hence the expression (relation) thus obtained is Fuss’ relation for each of the
rotation numbers 1, 3, 5, 7 for n = 17. In the same way, it can also be seen that it analogously holds for rotation numbers
2, 4, 6, 8 for n = 17. So, the relation (11) for n = 17 can be called a generator for Fuss’ relation for bicentric 17-gons with
odd rotation numbers for n = 17. Also, the relation (12) for n = 17 can be called the generator for Fuss’ relation for bicentric
17-gons with even rotation numbers for n = 17.

We remark that in all examples considered we have found that the following holds. If m and n are odd integers such
that each coset obtained for m has the same number of elements as each coset obtained for n, then we obtain an expression
that is Fuss’ relation for both m and n. So, for example, this is valid for m = 7 and n = 9, and for m = 15 and n = 17. Thus,
relations (11) and (12) can be generators for Fuss’ relations for bicentric n-gons with different odd n. (It seems that there
are many other interesting properties, but one would require a powerful computer to investigate these.)

Acknowledgement

The author wishes to express his gratitude to the referee for many useful remarks and suggestions.

References

[1] A. Cayley, Developments on the porism of the in-and-circum-scribed polygon, Philosophical Magazine VII (1854) 339–345.
[2] N. Fuss, De quadrilateris quibus circulum tam inscribere quam circumscribere licet, Nova Acta Academiæ Scientiarum Imperialis Petropolitanæ X (1797)

103–125.
[3] N. Fuss, De polygonis simmetrice irregularibus circulo simul inscriptis et circumscriptis, Nova Acta Academiæ Scientiarum Imperialis Petropolitanæ XIII

(1798) 168–189.
[4] J.V. Poncelet, Traité des propriétés projectives des figures : ouvrage utile a qui s’occupent des applications de la géométrie descriptive et d’opérations

géométriques sur le terrain I, 2nd ed., Gauthier–Villars, Paris, 1865–1866, First ed. in 1822.
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