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In this Note, we study Q-curvature flow on S4 with indefinite nonlinearity. Our result is
that the prescribed Q-curvature problem on S4 has a solution provided the prescribed
non-negative Q-curvature f has its positive part, which possesses non-degenerate critical
points such that �S4 f �= 0 at the saddle points and an extra condition such as a nontrivial
degree counting condition.
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r é s u m é

Dans cette Note on étudie le flot de Q-courbure sur S4 dans le cas d’une non-linéarité
indéfinie. Le résultat montre que le problème de la Q-courbure imposée sur S4 a une
solution à condition que la Q-courbure non négative imposée f ait une partie strictement
positive et des points critiques non dégénérés tels que �S4 f �= 0 aux points selles et une
condition supplémentaire du type condition non triviale sur le degré.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Following the works of A. Chang and P. Yang [5], M. Brendle [4], A. Malchiodi and M. Struwe [9], we study a heat flow
method to the prescribed Q-curvature problem on S4. Given the Riemannian metric g in the conformal class of standard
metric c on S4 with Q-curvature Q g . It is well known that

Q g = − 1

12

(
�g R g − R2

g + 3
∣∣Rc(g)

∣∣2) := Q ,

where R g , Rc(g), �g are the scalar curvature, Ricci curvature tensor, the Laplacian operator of the metric g , respectively.
Recall the Chern–Gaussian–Bonnet formula on S4 is,∫

S4

Q g dv g = 8π2.

By this, we know that Q g has to be positive somewhere. This gives a necessary condition for the prescribed Q-curvature
problem on S4. Assuming the prescribed curvature function f being positive on S4, the heat flow for the Q-curvature
problem is a family of metrics of the form g = e2u(x,t)c satisfying:
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ut = α f − Q , x ∈ S4, t > 0, (1)

where u : S4 × (0, T ) → R is the unknown, and α = α(t) is defined by

α

∫

S4

f dv g = 8π2. (2)

Here dv g is the area element with respect to the metric g . It is easy to see that αt
∫

S4 f dv g = 2α
∫

S4 (Q − α f ) f dv g .
A. Malchiodi and M. Struwe [9] can show in their Theorem 1.1 that the flow exists globally, furthermore, the flow converges
at time infinity provided f is positive and possesses non-degenerate critical points such that �S4 f �= 0 at the saddle points
with the condition,∑

{p:∇ f (p)=0;�S4 f (p)<0}
(−1)ind( f ,p) �= 0.

Here �S4 := � is the analyst’s Laplacian on the standard 4-sphere (S4, c). Recall that
∫

S4 dvc = 8
3 π2. The purpose of this

Note is to relax their assumption by allowing the function f to have zeros.
Since we have

Q = 1

2
e−4u

(
�2u − div

((
2

3
R(c)c − 2Rc(c)

)
du

)
+ 6

)
,

Eq. (1) defines a nonlinear parabolic equation for u, and the flow exists at least locally for any initial data u|t=0 = u0 and
any smooth function f being positive somewhere. Clearly, we have:

∂t

∫

S4

dv g = 2
∫

S4

ut dv g = 0.

We shall assume that the initial data u0 satisfies the condition,∫

S4

f e4u dvc > 0. (3)

We remark that since f can be approximated by positive smooth functions, the set of functions satisfying (3) should
be contractible. Then we can use the handle-body theorem following Malchiodi and Struwe [9]. We shall show that the
property (3) is preserved along the flow even for f changing signs. In some sense, this may be known to experts. It is easy
to compute that

Q t = −4ut Q − 1

2
P ut = 4Q (Q − α f ) + P (α f − Q ), (4)

where P = P g = e−4u Pc and Pc is the Paneitz operator in the metric c on S4 [5]. Using (4), we can compute the growth
rate of the Calabi-type energy

∫
S4 |Q − α f |2 dv g .

Our main result is following:

Theorem 1. Let f be a positive somewhere, non-negative smooth function on S4 with only non-degenerate critical points on the its
positive part f+ with its Morse index ind( f+, p). Suppose that at each critical point p of f+ , we have � f �= 0. Let mi be the number
of critical points with f (p) > 0, �S4 f (p) < 0 and ind( f , p) = 4 − i. Suppose that there is no solutions with coefficients ki � 0 to the
system of equations

m0 = 1 + k0, mi = ki−1 + ki, 1 � i � 4, k4 = 0.

Then f is the Q-curvature of a conformal metric g = e2uc on S4 .

A similar result for curvature flow to the Nirenberg problem on S2 has been obtained in [6]. See [2,7,11] and [8] for
related.

For simplifying notations, we shall use the conventions that dc = dvc
8
3 π2 and ū = ū(t) defined by:

∫
S4 (u − ū)dvc = 0.

2. Basic properties of the flow

In this section we may allow f to change signs. Recall the following result of Beckner [3]:∫
4

(|�u|2 + 2|∇u|2 + 12u
)

dc � log

( ∫
4

e4u dc

)
= 0, (5)
S S
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where |∇u|2 is the norm of the gradient of the function u with respect to the standard metric c. Here we have used the
fact that

∫
S4 e4u dc = 1 along the flow (1).

We show that the condition (3) is preserved along the flow (1). In fact, letting E(u) = ∫
S4 (u P u + 4Q cu)dc = ∫

S4 (|�u|2c +
2|∇u|2c + 12u)dc be the Liouville energy of u and letting, E f (u) = E(u) − 3 log(

∫
S4 f e4u dc), be the energy function for the

flow (1), we then compute that

∂t E f (u) = − 3

2π2

∫

S4

|α f − Q |2 dv g � 0. (6)

One may see Lemma 2.1 in [9] for a proof of this formula. Hence

E f
(
u(t)

)
� E f (u0), t > 0.

After using the inequality (5) we have,

log

(
1
/∫

S4

f e4u dc

)
� E f (u0), (7)

which implies that
∫

S4 f e4u dvc > 0 and furthermore, eE f (u0)
∫

S4 e4u dc �
∫

S4 f e4u dc.
Note also that

∫
S4 f e4u dc = 1/α(t). Hence, α(t) � 1

eE f (u0) . Using the definition of α(t) we have: α(t) � 1
maxS4 f . We then

conclude that α(t) is uniformly bounded along the flow, i.e.,

1

maxS4 f
� α(t) � 1

eE f (u0)
. (8)

We shall use this inequality to replace (26) in [9] in the study of the normalized flow, which will be defined in the next
section following the work of A. Malchiodi and M. Struwe [9]. If we have a global Q-curvature flow, then using (6) we have:

2

∞∫
0

dt

∫

S4

|α f − Q |2 dv g � 4π
(

E f (u0) + log max
S4

f
)
.

Hence we have a suitable sequence tl → ∞ with associated metrics gl = g(tl) and α(tl) → α > 0, and letting Q l = Q (gl)

be the Q-curvature of the metric gl , such that
∫

S4 |Q l − α f |2 → 0 (tl → ∞). Therefore, once we have a limiting metric g∞
of the sequence of the metrics gl , it follows that Q (g∞) = α f . After a re-scaling, we see that f is the Q-curvature of the
metric βg∞ for some β > 0, which implies our Theorem 1.

3. Normalized flow and the proof of Theorem 1

In this section, we fix f assumed in Theorem 1. We now introduce the normalized flow. For the given flow g(t) =
e2u(t)c on S4, there exists a family of conformal diffeomorphisms φ = φ(t) : S4 → S4, which depends smoothly on the time
variable t , such that for the metrics h = φ∗g , we have:∫

S4

x dvh = 0, for all t � 0.

Here x = (x1, x2, x3, x4, x5) ∈ S4 ⊂ R5 is a position vector of the standard 4-sphere. Let v = u ◦ φ + 1
4 log(det(dφ)). Then

we have h = e2v c. Using the conformal invariance of the Liouville energy [5], we have: E(v) = E(u), and furthermore,
Vol(S4,h) = Vol(S4, g) = 8

3 π2, for all t � 0.
Assume u(t) satisfies (1) and (2). Then we have the uniform energy bounds:

0 � E(v) � E(u) = E f (u) + log

(∫

S4

f e4u dc

)
� E f (u0) + log

(
max

S4
f
)
.

Using Jensen’s inequality we have: 2v̄ := ∫
S4 2v dc � log(

∫
S4 e4v dc) = 0. By this, we can obtain the uniform H1 norm

bound of v for all t � 0 that supt |v(t)|H1(S2) � C . See the proof of Lemma 3.2 in [9]. Using the Aubin–Moser–Trudinger
inequality [1] we further have

4 sup
{0�t<T }

∫

S4

∣∣u(t)
∣∣dc � sup

t

∫

S4

e4|u(t)| dc � C < ∞.

Notice that vt = ut ◦φ + 1
4 e−4v divS4 (ξe4v) where ξ = (dφ)−1φt is the vector field on S4 generating the flow (φ(t)), t � 0,

as in [9], formula (17), with the uniform bound |ξ |2
L∞(S4)

� C
∫

S4 |α f − K |2 dv g .

With the help of this bound, we can show (see Lemma 3.3 in [9]) that for any T > 0, the following holds:
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sup
0�t<T

∫

S2

e4|u(t)| dc < +∞.

Following the method of A. Malchiodi and M. Struwe [9] (see also Lemma 3.4 in [10]) and using the bound (8) and the
growth rate of α, we can show that

∫
S4 |α f − Q |2 dv g → 0 as t → ∞. Once getting this curvature decay estimate, we can

come to consider the concentration behavior of the metrics g(t). Following [10], we show:

Lemma 2. Let (ul) be a sequence of smooth functions on S4 with associated metrics gl = e2ul c with Vol(S4, gl) = 8
3 π2 , l = 1,2, . . . as

constructed above. Suppose that there is a smooth non-negative function Q ∞ , which is positive somewhere on S4 such that∣∣Q (gl) − Q ∞
∣∣

L2(S4,gl)
→ 0

as l → ∞. Let hl = φ∗
l gl = e2vl c be defined as before. Then we have either 1) for a subsequence l → ∞ we have ul → u∞ in H4(S4, c),

where g∞ = e2u∞c has Q-curvature Q ∞ , or 2) there exists a subsequence, still denoted by (ul) and a point q ∈ S4 with Q ∞(q) > 0,
such that the metric gl has a measure concentration that dv gl → 8

3 π2δq weakly in the sense of measures, while hl → c in H4(S4, c)
and in particular, Q (hl) → 3 in L2(S4). Moreover, in the latter case the conformal diffeomorphisms φl weakly converges in H2(S4) to
the constant map φ∞ = q.

Proof. The case 1) can be proved as Lemma 3.6 in [9]. So we need only prove the case 2). As in [9], we choose ql ∈ S4 and
radii rl > 0 such that

sup
q∈S4

∫
B(q,rl)

∣∣Q (gl)
∣∣ dv gl �

∫
B(ql,rl)

∣∣Q (gl)
∣∣ dv gl = 2π2,

where B(q, rl) is the geodesic ball in (S4, gl). Then we have rl → 0 and we may assume that ql → q as l → ∞. For each l,
we introduce φl as in Lemma 3.6 in [9] so that the functions, ûl = ul ◦φl + 1

4 log(det(dφl)), satisfy the conformal Q-curvature

equation −P R4 ûl = −�2
R4 ûl = 2Q̂ le4ûl , in R4, where Q̂ l = Q (gl)◦φ and P R4 is the Paneitz operator of the standard Euclidean

metric gR4 . Note that for ĝl = φ∗ gl = e2ûl gR4 , we have: Vol(R4, ĝl) = Vol(S4, gl) = 8
3 π2. Arguing as in [9], we can conclude

a convergent subsequence ûl → û∞ in H4
loc(R4) where û∞ satisfies the Liouville type equation, −�2

R4 û∞ = Q̂ ∞(q)e4û∞ , on

R4, with the finite volume
∫

R4 e4û∞ dz � 8
3 π2.

We need to exclude the case when Q ∞(q) = 0. If Q ∞(q) = 0, then �R4 û := �R4 û∞ is a harmonic function in R4.
Let ū(r) be the average of u on the circle ∂ Br(0) ⊂ R4. Then we have �2

R4 ū = 0. Hence �R4 ū = A0 + B0r−2 for some
constants A0 and B0, where r = |x|. Since �R4 ū is a continuous function on [0,∞), we have �R4 ū = A, which gives us that
ū = A + Br2 + Cr−2, for some constants A, B , and C . But this is impossible since we have by Jensen’s inequality that

2π

∞∫
0

e4ū(r)r3 dr �
∫

R4

e4û∞ dz � 8

3
π2.

The remaining part is the same as in the proof of Lemma 3.6 in [9]. We confer to [9] for the full proof. �
With this understanding, we can do the same finite-dimensional dynamics analysis as in Section 5 in [9]. Then arguing

as in Section 5 in [9] we can prove Theorem 1. By now the argument is well known, so we omit the detail and refer to [9]
for full discussion. Thus, we complete the proof of Theorem 1.
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