The Ghirlanda-Guerra identities for mixed p-spin model

Les identités de Ghirlanda-Guerra pour les mélanges de modèles à p-spin

Dmitry Panchenko

Department of Mathematics, Texas AEM University, 77843 College Station, TX, USA

A R T I C L E IN F O

Article history:

Received 31 January 2010
Accepted 3 February 2010
Available online 18 February 2010
Presented by Michel Talagrand

Abstract

We show that, under the conditions known to imply the validity of the Parisi formula, if the generic Sherrington-Kirkpatrick Hamiltonian contains a p-spin term then the GhirlandaGuerra identities for the p th power of the overlap hold in a strong sense without averaging. This implies strong version of the extended Ghirlanda-Guerra identities for mixed p-spin models than contain terms for all even $p \geqslant 2$ and $p=1$.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous montrons que sous les conditions connues pour impliquer la validité de la formule de Parisi, si l'Hamiltonien du modè le générique de Sherrington-Kirkpatrick Hamiltonien contient un "Hamiltonien de p-spin» alors les identités de Ghirlanda-Guerra pour la puissance p des recouvrements sont valides dans un sens fort (et pas seulement en moyenne sur les parametres).
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

A generic mixed p-spin Hamiltonian $H_{N}(\boldsymbol{\sigma})$ indexed by spin configurations $\sigma \in\{-1,+1\}^{N}$ is defined as a linear combination

$$
\begin{equation*}
H_{N}(\boldsymbol{\sigma})=\sum_{p \geqslant 1} \beta_{p} H_{p}(\boldsymbol{\sigma}) \tag{1}
\end{equation*}
$$

of p-spin Sherrington-Kirkpatrick Hamiltonians

$$
\begin{equation*}
H_{p}(\boldsymbol{\sigma})=\frac{1}{N^{(p-1) / 2}} \sum_{1 \leqslant i_{1}, \ldots, i_{p} \leqslant N} g_{i_{1}, \ldots, i_{p}} \sigma_{i_{1}} \ldots \sigma_{i_{p}} \tag{2}
\end{equation*}
$$

where $\left(g_{i_{1}, \ldots, i_{p}}\right)$ are i.i.d. standard Gaussian random variables, also independent for all $p \geqslant 1$. For simplicity of notation, we will keep the dependence of H_{p} on N implicit. If a model involves an external field parameter $h \in \mathbb{R}$ then the (random) Gibbs measure on $\{-1,+1\}^{N}$ corresponding to the Hamiltonian H_{N} is defined by

[^0]\[

$$
\begin{equation*}
G_{N}(\boldsymbol{\sigma})=\frac{1}{Z_{N}} \exp \left(H_{N}(\boldsymbol{\sigma})+h \sum_{i \leqslant N} \sigma_{i}\right) \tag{3}
\end{equation*}
$$

\]

where Z_{N} is the normalizing factor called the partition function. As usual, we will denote by $\langle\cdot\rangle$ the expectation with respect to the product Gibbs measure $G_{N}^{\otimes \infty}$. One of the most important properties of the Gibbs measure G_{N} was discovered by Ghirlanda and Guerra in [2] who showed that on average over some small perturbation of the parameters (β_{p}) in (1) the annealed product Gibbs measure satisfies a family of distributional identities which are now called the GhirlandaGuerra identities. A more convenient version of this result proved in [7] can be formulated as follows. There exists a small perturbation ($\beta_{N, p}$) of the parameters in (1) such that all $\beta_{N, p} \rightarrow \beta_{p}$ and such that for all $p \geqslant 1, n \geqslant 2$ and any function $f=f\left(\boldsymbol{\sigma}^{1}, \ldots, \boldsymbol{\sigma}^{n}\right):\left(\{-1,+1\}^{N}\right)^{n} \rightarrow[-1,1]$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left|\mathbb{E}\left(f R_{1, n+1}^{p}\right\rangle-\frac{1}{n} \mathbb{E}\langle f\rangle \mathbb{E}\left(R_{1,2}^{p}\right\rangle-\frac{1}{n} \sum_{l=2}^{n} \mathbb{E}\left\langle f R_{1, l}^{p}\right\rangle\right|=0 \tag{4}
\end{equation*}
$$

where $\langle\cdot\rangle$ is now the Gibbs average corresponding to the Hamiltonian (1) with perturbed parameters ($\beta_{N, p}$) and $R_{l, l^{\prime}}=$ $N^{-1} \sum_{i \leqslant N} \sigma_{i}^{l} \sigma_{i}^{l^{\prime}}$ is the overlap of configurations $\boldsymbol{\sigma}^{l}$ and $\boldsymbol{\sigma}^{l^{\prime}}$. Of course, the ultimate goal would be to show that (4) holds without perturbing the parameters $\left(\beta_{p}\right)$ which would mean that the joint distribution of the overlaps $\left(R_{l, l^{\prime}}\right)_{l, l^{\prime} \geqslant 1}$ under the annealed product Gibbs measure $\mathbb{E} G_{N}^{\otimes \infty}$ asymptotically satisfies the following distributional identities (up to symmetry considerations): for any $n \geqslant 2$, conditionally on $\left(R_{l, l^{\prime}}\right)_{1 \leqslant l<l^{\prime} \leqslant n}$ the law of $R_{1, n+1}$ is given by the mixture $n^{-1} \mu+n^{-1} \sum_{l=2}^{n} \delta_{R_{1, l}}$ where μ is the law of $R_{1,2}$. Toward this goal, a stronger version of (4) for the original Hamiltonian (1) without any perturbation of parameters was proved for $p=1$ in [1] under the additional assumption that $\beta_{1} \neq 0$ and a non-restrictive assumption on the limit of the free energy $F_{N}=N^{-1} \mathbb{E} \log Z_{N}$. Here we will prove the same result for all p under the assumptions and as a direct consequence of the seminal work of Talagrand in [6] where the validity of the Parisi formula was proved. Namely, from now on we will assume that the sum in (1) is taken over $p=1$ and even $p \geqslant 2$. In this case, it was proved in [6] that the limit of the free energy

$$
\begin{equation*}
\lim _{N \rightarrow \infty} F_{N}(\boldsymbol{\beta})=P(\boldsymbol{\beta}) \tag{5}
\end{equation*}
$$

exists and is given by the Parisi formula $P(\boldsymbol{\beta})$ discovered in [4]. The exact definition of $P(\boldsymbol{\beta})$ will not be important to us and the only nontrivial property that we will use is its differentiability in each coordinate β_{p} which was proved in [5] (see also [3]).

Theorem 1.1. For $p=1$ and for all even $p \geqslant 2$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}| | H_{p}(\boldsymbol{\sigma})-\mathbb{E}\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle| \rangle=0 \tag{6}
\end{equation*}
$$

If $\beta_{p} \neq 0$ then (6) implies (4) by the usual integration by parts. In particular, if $\beta_{p} \neq 0$ for $p=1$ and all even $p \geqslant 2$, the positivity principle of Talagrand proved in [8] implies the strong version of the extended Ghirlanda-Guerra identities without any perturbation of the parameters.

Remark. We will see that the proof does not depend on the specific form of the Hamiltonian (1) and the result can be formulated in more generality. Namely, given a sequence of random measures ν_{N} on some measurable space (Σ, S) and a sequence of random processes A_{N} indexed by $\sigma \in \Sigma$, consider a sequence of Gibbs' measures G_{N} defined by the change of density

$$
d G_{N}(\boldsymbol{\sigma})=Z_{N}^{-1} \exp \left(x A_{N}(\boldsymbol{\sigma})\right) \mathrm{d} v_{N}(\boldsymbol{\sigma})
$$

Let $\psi_{N}(x)=N^{-1} \log Z_{N}$ and $F_{N}(x)=\mathbb{E} \psi_{N}(x)$. Suppose that $\mathbb{E}\left|\psi_{N}(x)-F_{N}(x)\right| \rightarrow 0$ and $F_{N}(x) \rightarrow P(x)$ in some neighborhood of x_{0}, and suppose that the limit $P(x)$ is differentiable at x_{0}. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}\langle | A_{N}(\boldsymbol{\sigma})-\mathbb{E}\left\langle A_{N}(\boldsymbol{\sigma})\right\rangle_{x_{0}}| \rangle_{x_{0}}=0 \tag{7}
\end{equation*}
$$

assuming some measurability and integrability conditions on A_{N} and ν_{N} which will be clear from the proof and are usually trivially satisfied. In Theorem 1.1 we simply appeal to the results in [5] and [6].

Proof of Theorem 1.1. It has been observed for a long time that (see, for example, [1])

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}\left|\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle-\mathbb{E}\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle\right|=0
$$

This is where one uses the fact that $\mathbb{E}\left|\psi_{N}-F_{N}\right| \rightarrow 0$, which is well known for p-spin models. It remains to prove that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \| H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle| \rangle=0 \tag{8}
\end{equation*}
$$

This was proved in [1] for $p=1$, but here we will show how this can be obtained as a direct consequence of (5) for all p. Let $\langle\cdot\rangle_{x}$ denote the Gibbs average corresponding to the Hamiltonian (1) where β_{p} has been replaced by x. Consider $\beta_{p}^{\prime}>\beta_{p}$ and let $\delta=\beta_{p}^{\prime}-\beta_{p}$. We start with the following obvious equation,

$$
\begin{equation*}
\int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}| | H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)| \rangle_{x} \mathrm{~d} x=\delta \mathbb{E}\langle | H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)| \rangle_{\beta_{p}}+\int_{\beta_{p}} \int_{\beta_{p}}^{\beta_{p}^{\prime}} \frac{\partial}{\partial t} \mathbb{E}| | H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)| \rangle_{t} \mathrm{~d} t \mathrm{~d} x . \tag{9}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left.\left|\frac{\partial}{\partial t} \mathbb{E}\right|\left|H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)\right|\right\rangle_{t} \mid & \left.=|\mathbb{E}|\left|H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)\right|\left(H_{p}\left(\boldsymbol{\sigma}^{1}\right)+H_{p}\left(\boldsymbol{\sigma}^{2}\right)-2 H_{p}\left(\boldsymbol{\sigma}^{3}\right)\right)\right\rangle_{t} \mid \\
& \leqslant 2 \mathbb{E}\left\langle\left(H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)\right)^{2}\right\rangle_{t} \leqslant 8 \mathbb{E}\left(\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{t}\right)^{2}\right\rangle_{t}
\end{aligned}
$$

Eq. (9) implies

$$
\begin{aligned}
\mathbb{E}\left|\left|H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)\right|\right\rangle_{\beta_{p}} & \leqslant \frac{1}{\delta} \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}| | H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)| \rangle_{x} \mathrm{~d} x+\frac{8}{\delta} \int_{\beta_{p} \beta_{p}}^{\beta_{p}^{\prime}} \int_{x}^{x} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{t}\right)^{2}\right\rangle_{t} \mathrm{~d} t \mathrm{~d} x \\
& \leqslant \frac{2}{\delta} \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}\langle | H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{x}| \rangle_{x} \mathrm{~d} x+8 \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{t}\right)^{2}\right\rangle_{t} \mathrm{~d} t \\
& \leqslant 2\left(\frac{1}{\delta} \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{x}\right)^{2}\right\rangle_{x} \mathrm{~d} x\right)^{1 / 2}+8 \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{x}\right)^{2}\right\rangle_{x} \mathrm{~d} x
\end{aligned}
$$

Therefore, if we denote

$$
\Delta_{N}=\frac{1}{N} \int_{\beta_{p}}^{\beta_{p}^{\prime}} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{\chi}\right)^{2}\right\rangle_{\chi} \mathrm{d} x
$$

we showed that

$$
\begin{equation*}
\frac{1}{N} \mathbb{E}\left|\left|H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle\right|\right\rangle \leqslant \frac{1}{N} \mathbb{E}| | H_{p}\left(\boldsymbol{\sigma}^{1}\right)-H_{p}\left(\boldsymbol{\sigma}^{2}\right)| \rangle \leqslant 2 \sqrt{\frac{\Delta_{N}}{N \delta}}+8 \Delta_{N} \tag{10}
\end{equation*}
$$

If for a moment we think of $F_{N}=F_{N}(x)$ as a function of x only then

$$
F_{N}^{\prime}(x)=\frac{1}{N} \mathbb{E}\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{x} \quad \text { and } \quad F_{N}^{\prime \prime}(x)=\frac{1}{N} \mathbb{E}\left\langle\left(H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle_{x}\right)^{2}\right\rangle_{x}
$$

so that $\Delta_{N}=F_{N}^{\prime}\left(\beta_{p}^{\prime}\right)-F_{N}^{\prime}\left(\beta_{p}\right)$. Since $F_{N}(x)$ is convex, for any $\gamma>0$,

$$
\Delta_{N}=F_{N}^{\prime}\left(\beta_{p}^{\prime}\right)-F_{N}^{\prime}\left(\beta_{p}\right) \leqslant \frac{F_{N}\left(\beta_{p}^{\prime}+\gamma\right)-F_{N}\left(\beta_{p}^{\prime}\right)}{\gamma}-\frac{F_{N}\left(\beta_{p}\right)-F_{N}\left(\beta_{p}-\gamma\right)}{\gamma}
$$

and, therefore, Eqs. (10) and (5) now imply

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}\langle | H_{p}(\boldsymbol{\sigma})-\left\langle H_{p}(\boldsymbol{\sigma})\right\rangle| \rangle \leqslant 8\left(\frac{P\left(\beta_{p}^{\prime}+\gamma\right)-P\left(\beta_{p}^{\prime}\right)}{\gamma}-\frac{P\left(\beta_{p}\right)-P\left(\beta_{p}-\gamma\right)}{\gamma}\right)
$$

where again we write $P=P(x)$ as a function of x only. Letting $\beta_{p}^{\prime} \rightarrow \beta_{p}$ first and then letting $\gamma \rightarrow 0$ and using that $P(x)$ is differentiable proves the result.

References

[1] S. Chatterjee, The Ghirlanda-Guerra identities without averaging, preprint, arXiv:0911.4520, 2009.
[2] S. Ghirlanda, F. Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity, J. Phys. A 31 (46) (1998) 9149-9155.
[3] D. Panchenko, On differentiability of the Parisi formula, Electron. Comm. Probab. 13 (2008) 241-247.
[4] G. Parisi, A sequence of approximate solutions to the S-K model for spin glasses, J. Phys. A 13 (1980) L-115.
[5] M. Talagrand, Parisi measures, J. Funct. Anal. 231 (2) (2006) 269-286.
[6] M. Talagrand, Parisi formula, Ann. of Math. (2) 163 (1) (2006) 221-263.
[7] M. Talagrand, Construction of pure states in mean-field models for spin glasses, preprint (2008), Probab. Theory Related Fields, in press, http://www. springerlink.com/content/y507332m08275t67/?p=d35ca639b02943ecae07559b26ef2abf\&pi=10.
[8] M. Talagrand, Mean field models for spin glasses, manuscript.

[^0]: E-mail address: panchenko.math@gmail.com.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.02.004

