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We show that the Herglotz wave function with kernel the Tikhonov regularized solution of
the far field equation becomes unbounded as the regularization parameter tends to zero iff
the wavenumber k belongs to a discrete set of values. When the scatterer is such that the
total field vanishes on the boundary, these values correspond to the square root of Dirichlet
eigenvalues for −�. When the scatterer is a nonabsorbing inhomogeneous medium these
values correspond to so-called transmission eigenvalues.
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r é s u m é

Nous montrons qu’une certaine norme de l’onde de Herglotz ayant pour noyau la
régularisée de Tikhonov de la solution de l’équation de champs lointains tend vers ∞
lorsque le paramètre de régularisation tend vers 0, si le nombre d’onde k appartient à un
ensemble discret de valeurs. Lorsque l’objet diffractant est tel que l’onde s’annule sur sa
frontière, ces valeurs sont les racines carrées des valeurs propres de Dirichlet pour −�.
Lorsque l’objet diffractant est un milieu pénétrable non absorbant, ces valeurs coincident
avec les dites valeurs propres de transmission.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Considérons le problème de diffraction d’une onde plane ui(x,d) = eikx·d (k > 0 désigne le nombre d’onde et d un vecteur
unitaire) par une inclusion D ⊂ R

2 (ouvert borné Lipschitzien de complément connexe). Nous nous intéressons aussi bien
au cas où l’inclusion modélise un obstacle, auquel cas le champ total u = ui + us satisfait (1), qu’au cas où l’inclusion
modélise un objet pénétrable d’indice n (tq. |n − 1| � γ > 0 dans D), auquel cas u = ui + us satisfait (7). On note u∞(x̂,d) le
champ lointain associé à us et défini par (2). On introduit l’opérateur de champs lointains F : L2(Ω) → L2(Ω) comme étant
l’opérateur intégral de noyau u∞ (voir (3)). En particulier, F g est le champ lointain associé à H g(x) := ∫

Ω
eikx·d g(d)dsd , dite

onde de Herglotz de noyau g . On note F δ l’opérateur associé à des mesures bruitées des champs lointains et on suppose qu’il
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verifie (4). Nous allons montré qu’il est possible de repérer certaines fréquences caractéristiques de l’inclusion D , à partir
des mesures de champs lointains, en se basant sur le comportement de la suite (H gz,δ)δ , où gz,δ désigne le minimiseur de
la fonctionnelle de Tikhonov (5) associée à un paramètre de régularisation ε(δ) → 0 lorsque δ → 0. On suppose pour cela
que (6) est vérifiée (ce qui est le cas par exemple lorsque F est d’image dense ; voir appendice).

Cas où D est un obstacle. Il est montré dans [1] que si z ∈ D et si k2 n’est pas une valeur propre de Dirichlet pour −�

dans D , alors ‖H gz,δ‖H1(D) reste bornée lorsque δ → 0. Nous complètons ce résultat en montrant (Theorem 2.1) que si k2

est une valeur propre de Dirichlet pour −� dans D , ‖H gz,δ‖H1(D) ne peut pas être bornée lorsque δ → 0 pour presque tout
z ∈ D .

Cas où D est un objet pénétrable. Nous définissons dans ce cas les fréquences de transmissions comme étant les fréquences
pour lesquelles le problème (8)–(9) admet une solution non triviale lorsque Φ = 0. Nous montrons (Theorem 3.2) que pour
ces fréquences, ‖H gz,δ‖L2(D) ne peut pas être borné lorsque δ → 0 pour presque tout z ∈ D .

1. Introduction

The linear sampling method is probably the best known of the new class of qualitative methods that have recently been
developed to solve time harmonic inverse scattering problems for acoustic and electromagnetic waves [3]. The solution of
inverse scattering problems by the linear sampling method is based on solving an ill-posed far field equation by using
Tikhonov regularization and since in general the far field equation has no solution this regularized solution does not con-
verge as the regularization parameter tends to zero. However, Arens [1] was able to show for the case of scattering problem
for the Helmholtz equation with Dirichlet boundary condition that, if the square of the wave number is not a Dirichlet
eigenvalue for −� in D , the Herglotz wave function with the regularized solution of the far field equation as kernel con-
verges in the H1(D) norm when the “sampling point” is in D . A similar result is also valid if the scattering object is a
nonabsorbing inhomogeneous medium with support D and index of refraction n where now instead of requiring that the
square of the wave number k is not a Dirichlet eigenvalue we must require that k is not a transmission eigenvalue (to be
defined in Section 3) and H1(D) is replaced with L2(D).

In the above investigation the case when k2 is a Dirichlet eigenvalue or k is a transmission eigenvalue was not addressed.
However, it has recently been shown that in the case of scattering by a nonabsorbing inhomogeneous medium transmission
eigenvalues can give valuable information on the index of refraction. In particular, a knowledge of the first transmission
eigenvalue provides a lower bound for maxD n(x) [2,4,9]. The importance of these new results rests on the fact that numer-
ical evidence indicates that transmission eigenvalues can be determined from a knowledge of the far field pattern of the
scattered wave. In particular, if Tikhonov regularization is used to solve the far field equation (for the “sampling point” z
inside the scattering object) and the L2-norm of the regularized solution is plotted against the wave number k, then sharp
peaks are seen at the values of k which, in the special case when transmission eigenvalues are known, correspond to these
eigenvalues. However, a mathematical explanation that the location of these peaks corresponds to the location of transmis-
sion eigenvalues has yet to be established for general domains D and arbitrarily indices of refraction. The purpose of this
paper is to provide this missing justification.

For the sake of presentation we limit ourselves to the two-dimensional case. In particular, the above problems correspond
to the scattering of either acoustic or electromagnetic waves scattered by an infinite cylinder [3]. Everything in the following
analysis holds true in the corresponding three-dimensional scalar case as well.

2. Scattering by an obstacle

We consider the scattering problem for the Helmholtz equation with Dirichlet boundary condition on the boundary of
the scattering obstacle D . In particular, we assume that D ⊂ R

2 is an open, bounded region with Lipschitz boundary ∂ D
such that R

2 \ D is connected. Then, factoring out a term of the form e−iωt where ω is the frequency, the total field,
u = ui + us satisfies the exterior boundary value problem

�u + k2u = 0 in R
2 \ D, u = 0 on ∂ D and lim

r→∞
√

r
(
∂us/∂r − ikus) = 0, (1)

where the incident field ui is given by ui(x,d) = eikx·d , k > 0, is the wave number, d is a unit vector, us is the scattered field
and the Sömmerfeld radiation condition holds uniformly in x̂ = x/|x| with r = |x|. It is shown in [3] that (1) has a unique
solution in u ∈ H1

loc(R
2 \ D) and us has the asymptotic behavior

us(x) = eikr

√
r

u∞(x̂,d) + O
(
r−3/2) (2)

as r → ∞ where u∞ is the far field pattern of the scattered wave. The far field pattern can now be used to define the far
field operator F : L2(Ω) → L2(Ω) by

(F g)(x̂) :=
∫

u∞(x̂,d)g(d)dsd (3)
Ω



F. Cakoni et al. / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 379–383 381
for g ∈ L2(Ω) where Ω := {x ∈ R
2: |x| = 1}. In particular, (F g)(x̂) is the far field pattern for the scattered field in (1)

where ui is the Herglotz wave function defined by H g(x) := ∫
Ω

eikx·d g(d)dsd . Hence, F = B H where B denotes the extension
by continuity of the mapping ui(·,d)|∂ D → u∞(·,d) from H1/2(∂ D) into L2(Ω). Let F δ be an operator corresponding to
noisy measurements uδ∞(x̂,d): we call this operator the noisy operator. We assume that

F δ = Bδ H, where
∥∥Bδ − B

∥∥ � δ (4)

where δ > 0 is a measure of the noise level and Bδ denotes the noisy bounded linear operator associated with B. In
particular F δ : L2(Ω) → L2(Ω) is a bounded and compact linear operator.

Of particular interest to us in the sequel is the Tikhonov regularized solution gδ
z,ε of the far field equation defined as the

unique minimizer of the Tikhonov functional [3],
∥∥F δ g − Φ∞(· , z)

∥∥2
L2(Ω)

+ ε‖g‖2
L2(Ω)

(5)

where the positive number ε is known as the Tikhonov regularization parameter, and where Φ∞(x̂, z) := exp(−ikx̂ · z +
iπ/4)/

√
8πk is the far field pattern of the fundamental solution Φ(x, z) := (i/4)H (1)

0 (k|x−z|), with H(1)
0 denoting the Hankel

function of the first kind of order zero. This regularized solution is used by the linear sampling method to determine ∂ D
from a knowledge of uδ∞ .

Let ε(δ) be a sequence of regularization parameters such that ε(δ) → 0 as δ → 0 and let gz,δ := gδ
z,ε(δ) be the minimizer

of (5) with ε = ε(δ). It was shown by Arens [1] that if k2 is not a Dirichlet eigenvalue for −� in D and if z ∈ D , then H gz,δ
converges in the H1(D) norm as δ → 0. We shall prove in the following that this is not in general true if k2 is a Dirichlet
eigenvalue. To this end we assume that the perturbed operator F δ is such that for all points z ∈ D ,

lim
δ→0

∥∥F δ gz,δ − Φ(·, z)
∥∥

L2(Ω)
= 0. (6)

We note that the equation F g = Φ∞ has in general no solution (and therefore the sequence (gz,δ) is in general not bounded
as δ → 0). However, (6) is verified as soon as the operator F has dense range (see Appendix A), which is true except for the
exceptional cases where k2 is a Dirichlet eigenvalue for D associated with an eigenfunction that can be represented as a
Herglotz wave function. We shall indicate in Appendix A the needed properties so that (6) holds even for these exceptional
cases.

Theorem 2.1. Let k2 be a Dirichlet eigenvalue and assume that (6) is true. Then for almost every z in D ‖H gz,δ‖H1(D) cannot be
bounded as δ → 0.

Proof. Assume that for a set of points z ∈ D which has a positive measure, ‖H gz,δ‖H1(D) � M for some constant M > 0 (the
constant M may depend on z). From the estimate∥∥F δ gz,δ − F gz,δ

∥∥ �
∥∥Bδ − B

∥∥‖H gz,δ‖H1/2(∂ D)

and (6) one easily deduces that ‖F gz,δ − Φ∞(·, z)‖L2(Ω) → 0 as δ → 0. On the other hand, there exists a subsequence of
vn = H gz,δn which converges weakly to some v ∈ H1(D) that satisfies �v + k2 v = 0 in D . By the compactness of the
operator B, we conclude that ‖B(vn|∂ D) − B(v|∂ D)‖L2(Ω) = ‖F gz,δn − B(v|∂ D)‖L2(Ω) → 0 as δn → 0. Therefore B(v|∂ D) =
Φ∞(· , z) and from Rellich’s lemma and the unique continuation principle v = Φ(· , z) on ∂ D . Since is k2 is a Dirichlet
eigenvalue, we conclude from [6, Theorem 53] that this is possible only if w(z) := ∫

∂ D ∂ϕ/∂νΦ(·, z)ds = 0 where ϕ is a
Dirichlet eigenfunction for −� in D associated with k2. Then w(z) = 0 for z ∈ D by unique continuation. On the other
hand w is a radiating solution to the Helmholtz equation in R

2 \ D such that w vanishes on ∂ D . The latter comes from
the continuity of the single layer potential. Hence w(z) = 0 in R

2 \ D and by the discontinuity property of the normal
derivative of the single layer potential one deduces that ∂ϕ/∂ν = 0 on ∂ D . By Green’s representation formula we now have
that ϕ(x) = 0 for x ∈ D , a contradiction since ϕ is an eigenvalue. The theorem now follows. �
3. Scattering by an inhomogeneous medium

We now turn our attention to the scattering problem for a dielectric inhomogeneous medium. This can be formulated as
the problem of finding a function u ∈ H1

loc(R
2) such that

�u + k2n(x)u = 0 in R
2, (7)

u = us + ui where again ui(x) = eikx·d and us is the scattered field satisfying the Sömmerfeld radiation condition. The index
of refraction n is assumed to be a real valued bounded function such that n(x) = 1 for x ∈ R

2 \ D where D is a bounded
domain having the same properties as in Section 2. Under our assumptions on D and n the scattering problem is uniquely
solvable in H1

loc(R
2). Furthermore, the scattered field us again has the asymptotic behavior (2). We also consider the far field

operator F given by (3) as well as the same setting and hypothesis for the perturbed operator F δ where now the operator B
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denotes the extension by continuity of the mapping ui(·,d)|D → u∞(·,d) from H inc(D) := {v ∈ L2(D); �v + k2 v = 0 in D}
into L2(Ω). Considering the minimizer gz,δ := gδ

z,ε(δ) for z ∈ D we now investigate the behavior of ‖H gz,δ‖L2(D) as δ → 0.
This question is closely linked to the analysis of so-called interior transmission problem which looks for functions wz and vz

in L2(D) such that wz − vz ∈ H2(D) and

�wz + k2n(x)wz = 0 and �vz + k2 vz = 0 in D, (8)

wz − vz = Φ(· , z) and
∂ wz

∂ν
− ∂vz

∂ν
= ∂Φ(· , z)

∂ν
on ∂ D. (9)

In particular B vz = Φ∞(· , z) if and only if wz and vz satisfy (8)–(9). In the following, the homogeneous interior transmission
problem, i.e. (8)–(9) with Φ(· , z) = 0 will play the same role as the Dirichlet eigenvalue problem plays in the analysis of
Section 2. Motivated by potential applications in nondestructive testing [2], inside D we allow the possibility of regions
D0 ⊂ D where the index of refraction is equal to one, i.e. D0 is a cavity. More precisely, we consider a region D0 ⊂ D ,
which can possibly be multiply connected, such that R

2 \ D0 is connected with Lipschitz boundary ∂ D0 and assume that
n(x) = 1 in D0. We further assume that |n − 1| is bounded away from zero in D \ D0 so that 1/(n − 1) ∈ L∞(D \ D0). The
interior transmission problem (8)–(9) for this case has recently been investigated in [4] (see [9,5] and [10] for the case
where D0 = ∅). Let θz ∈ H2(D) be the lifting function [8] such that θz = Φ(· , z) and ∂θz/∂ν = ∂Φ(· , z)/∂ν on ∂ D . With
the help of a cutoff function we can guarantee that θz = 0 in Dθ such that D0 ⊂ Dθ ⊂ D . Then, one easily shows that
uz := wz − vz − θz ∈ V 0(D) where

V 0(D) :=
{

u ∈ H2(D) such that u = 0,
∂u

∂ν
= 0 on ∂ D, and �u + k2u = 0 in D0

}

and uz satisfies the variational problem∫
D\D0

1

n − 1

{(
� + k2n

)
(uz − θz)

}{(
� + k2)ϕ}

dx = 0 for all ϕ ∈ V 0(D). (10)

In [4] it is shown that the Fredholm alternative holds for (10). We remark that in the case when D0 = ∅ (i.e. there are no
cavities inside the medium) everything in this section hold true: in this case D \ D0 reduces to D and V 0(D) to H2

0(D) [10].

Definition 3.1. Values of k > 0 for which the homogeneous interior transmission problem (8)–(9) (i.e. in (9) the boundary
data is 0) has nontrivial solutions are called transmission eigenvalues. The corresponding nontrivial solutions (w0, v0) are
called transmission eigenfunctions.

If k is a transmission eigenvalue associated with (w0, v0) then u0 = w0 − v0 is a nontrivial solution to (10) with θz = 0.
A major result of [4] (or [10] when D0 = ∅) is that (10) can be written in the form (I + B)uz = fθz , where B : V 0(D) → V 0(D)

is a compact, self-adjoint operator (depending on k) and fθz ∈ V 0(D). Moreover, it is shown that the solution exists except
for a set of values k which is at most discrete. Thus the set of transmission eigenvalues forms at most a discrete set.

As stated before, we are again interested in the Tikhonov regularized solution gz,δ := gδ
z,ε(δ) of (5) with ε = ε(δ) → 0 as

δ → 0. We first note that the result of Arens for obstacle scattering [1] can be carried through for the case of inhomogeneous
medium with real valued index of refraction. This follows from the fact that in this case the far field operator is normal
and Φ(·, z) is in the range of (F ∗ F )1/4 for z ∈ D [7]. In particular, it can be shown that if k is not a transmission eigenvalue
then the H gz,δ converges in the L2(D) norm as δ → 0. The following theorem shows that this is not in general true if k
is a transmission eigenvalue and (6) holds. Again this hypothesis is verified as soon as the operator F has dense range. In
the present case, the latter is true except for the exceptional cases where k is a transmission eigenvalue associated with
(w0, v0) such that v0 can be represented as a Herglotz wave function.

Theorem 3.2. Let k be a transmission eigenvalue and assume that (6) is true. Further assume that k2 is not both a Dirichlet and
Neumann eigenvalue of −� in D0 . Then for almost every z ∈ D ‖H gz,δ‖L2(D) cannot be bounded as δ → 0.

Proof. Assume that for a set of points z ∈ D which has a positive measure, ‖H gz,δ‖H1(D) � M for some constant M > 0
(the constant M may depend on z). Then following the same arguments as in the proof of Theorem 2.1 one deduces the
existence of vz ∈ H inc(D) such that B(vz) = Φ∞(·, z). We can now deduce the existence of a solution vz and wz to (8)–(9)
and hence a solution uz to (10). Since k is a transmission eigenvalue, we have that the kernel of the corresponding operator
I + B (defined after Definition 3.1) is nontrivial and consists of all transmission eigenfunctions u0. Hence, from the Fredholm
alternative and the fact that B is self-adjoint, we have that∫

1

n − 1

(
� + k2n

)
θz

(
� + k2)u0 dx = 0. (11)
D\D0
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Integrating by parts in (11) and using the equation and the zero boundary conditions for u0 as well as the definition of θz

we obtain that∫
∂ D

1

n − 1

(
� + k2n

)
u0

∂Φ(·, z)

∂ν
ds −

∫
∂ D

∂

∂ν

(
1

n − 1

(
� + k2n

)
u0

)
Φ(·, z)ds = 0, (12)

where these integrals have to be understood in the sense of H∓1/2 (resp. H∓3/2) duality pairing. Defining ψ(x) := 1
n−1 (� +

k2n(x))u0(x) in D \ D0 then, since k2 is not a Dirichlet and Neumann eigenvalue for −� in D0, ψ can be extended to
an L2(D) function satisfying (� + k2)ψ(x) = 0 in D (cf. [4]). Classical interior elliptic regularity results and the Green’s
representation theorem imply that

ψ(z) =
∫
∂ D

(
ψ(x)

∂Φ(x, z)

∂ν
− ∂ψ(x)

∂ν
Φ(x, z)

)
dsx for z ∈ D. (13)

Eq. (12) and the unique continuation principle now show that ψ = 0 in D . Therefore (� + k2n(x))u0(x) = 0 in D \ D0. Since
u0 ∈ V 0(D) one deduces from Green’s representation theorem that u0 = 0 in D , which is a contradiction. �
Appendix A

Assumption (6) is central in proving Theorems 2.1 and 3.2. We now give examples when this assumption is valid inde-
pendently from the scattering problem. For the sake of clarity we shall keep the same notation as in Section 2 and since
the result is independent of z we set v∞ = Φ∞(·, z) and gδ = gz,δ .

Lemma A.1. If F has dense range then (6) is true.

Proof. This follows from the fact that for all g ∈ L2(Ω)∥∥F δ gδ − v∞
∥∥2

L2(Ω)
�

∥∥F δ g − v∞
∥∥2

L2(Ω)
+ ε(δ)‖g‖2

L2(Ω)
�

∥∥F g − v∞
∥∥2

L2(Ω)
+ (

ε(δ) + δ2‖H‖2)‖g‖2
L2(Ω)

.

The first term in the upper bound can be made arbitrarily small by choosing appropriate g and the second one goes to zero
as δ → 0 for fixed g . �

Let {uδ
i , σ

δ
i , vδ

i , i � 1} be a singular value decomposition of F δ such that F δuδ
i = σ δ

i vδ
i and σ δ

i > 0.

Lemma A.2. Property (6) is true if F δ has dense range and the sequence (F δ) satisfies

1. for all v ∈ L2(Ω),
∑

i�N (v, vδ
i )

2
L2 → 0 as N → ∞ uniformly with respect to δ,

2.
√

ε(δ)/σ δ
i → 0 as δ → 0 for all i � 1.

Proof. Easy calculations show that

∥∥F δ gδ − v∞
∥∥2

L2(Ω)
=

∑
i�1

(
ε(δ)

ε(δ) + (σ δ
i )2

)2(
v∞, vδ

i

)2
L2 �

∑
i<N

(
ε(δ)

ε(δ) + (σ δ
i )2

)2(
v∞, vδ

i

)2
L2 +

∑
i�N

(
v∞, vδ

i

)2
L2

where the second term in the upper bound can be made arbitrarily small by choosing N sufficiently large independently
from δ and the first one goes to zero as δ → 0 for fixed N . �
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