Number Theory

A property of the spectra of non-Pisot numbers

Une propriété du spectre des réels autres que les nombres de Pisot

Toufik Zaïmi
Département de mathématiques, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria

A R T I C L E IN F O

Article history:

Received 11 May 2009
Accepted after revision 8 January 2010
Available online 13 February 2010
Presented by Jean-Pierre Kahane

Abstract

Let θ be a real number satisfying $1<\theta<2, m$ a positive rational integer and $B_{m}(\theta)$ the set of polynomials with coefficients in $\{0, \pm 1, \ldots, \pm m\}$, evaluated at θ. We prove that $B_{m}(\theta)$ is everywhere dense when $0 \in B_{m}^{\prime}(\theta)$, where $B_{m}^{\prime}(\theta)$ is the derivative set of $B_{m}(\theta)$. We also show that if $B_{m}^{\prime}(\theta) \cap\left[0, \frac{1}{\theta} \prod_{k \geqslant 0}\left(1-\frac{1}{\theta^{2^{k}}}\right)\right]=\emptyset$, then $B_{m}(\theta)$ is discrete.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soient θ un nombre réel satisfaisant $1<\theta<2, m$ un entier rationnel positif et $B_{m}(\theta)$ l'ensemble des réels $P(\theta)$ pour P décrivant les polynômes à coefficients dans $\{0, \pm 1, \ldots$, $\pm m\}$. On montre que $B_{m}(\theta)$ est partout dense lorsque 0 est un élément de l'ensemble dérivé $B_{m}^{\prime}(\theta)$ de $B_{m}(\theta)$. On prouve également que si $B_{m}^{\prime}(\theta) \cap\left[0, \frac{1}{\theta} \prod_{k \geqslant 0}\left(1-\frac{1}{\theta^{2^{k}}}\right)\right]=\emptyset$, alors $B_{m}(\theta)$ est discret.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We continue the investigation of the distribution in the real line \mathbb{R} of the elements of the sets

$$
B=B_{m}(\theta):=\left\{\varepsilon_{0}+\varepsilon_{1} \theta+\cdots+\varepsilon_{n} \theta^{n}, n \in \mathbb{N}, \varepsilon_{k} \in\{-m, \ldots, 0, \ldots, m\}\right\},
$$

where θ is a real number satisfying $1<\theta<2$, and m runs through the set \mathbb{N} of positive rational integers. The study of B has been initiated by Erdős, Joó and Komornik in [3], and followed by some authors (see for instance the references in [7]). A result of Bugeaud [2] asserts that all sets $B_{m}(\theta)$ are uniformly discrete if and only if θ is a Pisot number. A Pisot number is a real algebraic integer greater than 1 , whose other conjugates over the field of the rationals \mathbb{Q} are of modulus less than 1 . Recall also that a subset X of \mathbb{R} is uniformly discrete if the usual distance between two distinct elements of X is greater than a positive constant depending only on X; a uniformly discrete set is discrete, that is a set with no finite limit point. Notice also that $B_{m}(\theta)$ is uniformly discrete if and only if the quantity $\beta=\beta_{m}(\theta):=\inf \left\{b, b \in B_{m}(\theta), b>0\right\}$ satisfies $\beta_{2 m}(\theta)>0$, or equivalently if and only if $0 \notin B_{2 m}^{\prime}(\theta)$, where $B^{\prime}=B_{m}^{\prime}(\theta)$ is the set of limit points of $B_{m}(\theta)$. In [5] Erdős and Komornik considered the general case where the real number θ is not necessary less than 2. A corollary of one of their results asserts that if θ is not a Pisot number and $\left.\theta \in] 1, \frac{1+\sqrt{5}}{2}\right]$ (respectively, and $\left.\theta \in\right] \frac{1+\sqrt{5}}{2}, 2\left[\right.$), then $B_{1}(\theta)$ is not discrete (respectively, then $B_{2}(\theta)$ is not discrete and $\beta_{3}(\theta)=0$). A natural question arises immediately: How can be distributed in \mathbb{R} the elements of B, when B is not discrete? The following result gives a partial answer to this problem:

[^0]Theorem 1. The set $B_{m}(\theta)$ is everywhere dense if and only if $\beta_{m}(\theta)=0$.
Combined with the above mentioned result of Erdős and Komornick, Theorem 1 yields:
Corollary. If θ is not a Pisot number, $m \geqslant 2$ and $\theta \in] 1, \frac{1+\sqrt{5}}{2}$ (respectively, $m \geqslant 3$ and $\left.\theta \in\right] \frac{1+\sqrt{5}}{2}, 2\left[\right.$), then $B_{m}(\theta)$ is everywhere dense.

Recall that the question whether there is a non-Pisot number, say again θ, satisfying $\beta_{1}(\theta)>0$, has been cited in [4] and remains open. From the above we also see that a possible way to show that all sets $B_{m}(\theta)$ are everywhere dense when θ is not a Pisot number, is to prove the implication

$$
\begin{equation*}
B_{m}^{\prime}(\theta) \neq \emptyset \quad \Rightarrow \quad \beta_{m}(\theta)=0 \tag{1}
\end{equation*}
$$

for $m=1$ and $\theta \in] 1, \frac{1+\sqrt{5}}{2}$] (respectively, for $m \in\{1,2\}$ and $\left.\theta \in\right] \frac{1+\sqrt{5}}{2}, 2\left[\right.$). In [1] Borwein and Hare have shown that $B_{m}(\theta)$ is discrete when $B_{m}(\theta) \cap\left[0, \frac{m}{\theta-1}\right]$ is finite, and the author [6] has proved that the bound $\frac{m}{\theta-1}$ may be replaced by the (non-optimal) constant $\frac{1}{\theta+1}$ without affecting the discreteness property of $B_{m}(\theta)$. The second aim of this note is to improve this last result:

Theorem 2. The following propositions are equivalent:
(i) The set $B_{m}(\theta)$ is discrete.
(ii) The set $B_{m}^{\prime}(\theta) \cap\left[0, \frac{1}{\theta} \prod_{k \geqslant 0}\left(1-\frac{1}{\theta^{2^{k}}}\right)\right]$ is empty.

2. The proofs

Proof of Theorem 1. Trivially we have $\beta=0$ when B is dense in \mathbb{R}. To make clear the proof of the converse we shall use the next result.

Lemma. If $\beta=0$, then the following properties hold:
(i) For any $\varepsilon>0$ there exists $b \in B$ such that $\varepsilon<b \leqslant \theta \varepsilon$.
(ii) Each element of B is a limit point of B from both sides.

Proof. (i) Since $\beta=0$, there is $b_{0} \in B$ such that $0<b_{0}<\varepsilon$. Let N be the greatest rational integer such that $\theta^{N} b_{0} \leqslant \varepsilon$. Then, $\varepsilon<\theta^{N+1} b_{0}, \varepsilon<\theta^{N+1} b_{0} \leqslant \theta \varepsilon$ and Lemma (i) follows, as $N+1 \in \mathbb{N}$.
(ii) Since $\beta \in B^{\prime}$ and $B=-B$, there is a decreasing sequence, say $\left(b_{k}\right)_{k \in \mathbb{N}}$, of distinct elements of B such that $\lim _{k \rightarrow \infty} b_{k}=$ 0 . Let $\varepsilon_{0}+\varepsilon_{1} \theta+\cdots+\varepsilon_{n} \theta^{n}$, where $\varepsilon_{i} \in\{-m, \ldots, 0, \ldots, m\}$ and $n \in \mathbb{N}$, be a representation of an element $b \in B$. Then, $\theta^{n+1} b_{k}+b \in B$ and the sequence $\left(\theta^{n+1} b_{k}+b\right)_{k \in \mathbb{N}}$ is decreasing to b. Considering the sequence $\left(-\theta^{n+1} b_{k}+b\right)_{k \in \mathbb{N}}$, we see that b is a left-hand limit point of B.

Let us return to the proof of Theorem 1, and assume on the contrary that $\beta=0$ and B is not everywhere dense. Then, there exist positive numbers, say t_{0} and δ, such that $\left[t_{0}, t_{0}+\delta\right] \cap B=\emptyset$, as $B=-B$ and $0 \in B^{\prime}$. Let $P=P(\delta):=\{t \in \mathbb{R}, t>$ 0 , $[t, t+\delta] \cap B=\emptyset\}$. Then, $t_{0} \in P$ and so $P \neq \emptyset$. We shall obtain a contradiction by considering the quantity $\alpha:=\inf P$. First suppose $\alpha \in P$, and let

$$
\begin{equation*}
x \in] \max \left(\alpha-\frac{\delta}{2}, 0\right), \alpha[\tag{2}
\end{equation*}
$$

Then, $0<x<\alpha$ and $[x, x+\delta] \cap B \neq \emptyset$. Let $b:=\varepsilon_{0}+\varepsilon_{1} \theta+\cdots+\varepsilon_{n} \theta^{n}$, where $\varepsilon_{i} \in\{-m, \ldots, 0, \ldots, m\}$ and $n \in \mathbb{N}$, be an element of $[x, x+\delta]$. Then, $b \in B$, and from the relations $x \leqslant b \leqslant x+\delta<\alpha+\delta$ and $[\alpha, \alpha+\delta] \cap B=\emptyset$, we have

$$
\begin{equation*}
b \in[x, \alpha[. \tag{3}
\end{equation*}
$$

Since $\theta<2$, Lemma (i) asserts that there is $\left.b^{\prime} \in B \cap\right] \frac{\alpha-x}{\theta^{n+1}}, 2 \frac{\alpha-x}{\theta^{n+1}}$ [, and by (2) we deduce that $\alpha-x<b^{\prime} \theta^{n+1}<2(\alpha-x)<\delta$. The last inequalities together with (3) yield $\alpha<b^{\prime} \theta^{n+1}+b<\alpha+\delta$, and these relations lead to a contradiction, since $b^{\prime} \theta^{n+1}+b \in B$ and $\left.B \cap\right] \alpha, \alpha+\delta[=\emptyset$. Now, assume that $\alpha \notin P$. Then, $[\alpha, \alpha+\delta] \cap B \neq \emptyset$ and there is a decreasing sequence, say $\left(t_{k}\right)_{k \in \mathbb{N}}$, of distinct elements of P such that $\lim _{k \rightarrow \infty} t_{k}=\alpha$ and $t_{k} \leqslant \alpha+\delta$ for all $k \in \mathbb{N}$. Let $b \in[\alpha, \alpha+\delta] \cap B$. It follows by the relations $\left[t_{k}, t_{k}+\delta\right] \cap B=\emptyset$ and $\alpha<t_{k} \leqslant \alpha+\delta<t_{k}+\delta$ that

$$
\begin{equation*}
\alpha \leqslant b<t_{k}, \quad \forall k \in \mathbb{N} \tag{4}
\end{equation*}
$$

Letting k tend to infinity in (4), we obtain $\alpha=b$ and so $[\alpha, \alpha+\delta] \cap B=\{\alpha\}$; this last equality leads also to a contradiction because by Lemma (ii) the number α is a right-hand limit point of B and so the set $[\alpha, \alpha+\delta] \cap B$ contains certainly more than one element.

Proof of the Corollary. Suppose that θ is not a Pisot number and $\theta \in] \frac{1+\sqrt{5}}{2}, 2[$ (respectively, and $\left.\theta \in] 1, \frac{1+\sqrt{5}}{2}\right]$). Then, $\beta_{3}(\theta)=0$ (respectively, $B_{1}(\theta)$ is not discrete and so $\beta_{2}(\theta)=0$ (this last equality has also been proved in [4])) and the result follows immediately by Theorem 1 , since $B_{m}(\theta) \subset B_{m+1}(\theta)$ for all $m \in \mathbb{N}$.

Proof of Theorem 2. Set $l=l_{m}(\theta):=\inf \left\{b^{\prime}, b^{\prime} \in B^{\prime} \cap\left[0, \infty[\}\right.\right.$ and $\ell:=\frac{1}{\theta} \prod_{k \geqslant 0}\left(1-\frac{1}{\theta^{2^{k}}}\right)$. It is clear that $B^{\prime} \cap[0, \ell]=\emptyset$ when B is discrete. Now, assume that B is not discrete. Then, Theorem 3 of [6] asserts that $l \leqslant \frac{1}{\theta+1}$. Let $\left(c_{n}\right)_{n} \geqslant 0$ be the sequence defined by $c_{0}=1$ and

$$
c_{n}=\prod_{0 \leqslant k \leqslant n-1}\left(\theta^{2^{k}}-1\right) \quad \text { for } n \in \mathbb{N}
$$

Then, $\frac{c_{n+1}}{\theta^{2 n^{n+1}}}=\frac{\left(\theta^{2^{n}}-1\right) c_{n}}{\theta^{2^{n+1}}}<\frac{c_{n}}{\theta^{2^{n}}+1}<\frac{c_{n}}{\theta^{2^{n}}}$,

$$
\frac{c_{n}}{\theta^{2^{n}}}=\frac{1}{\theta} \prod_{0 \leqslant k \leqslant n-1}\left(1-\frac{1}{\theta^{2^{k}}}\right)
$$

and so $\left(\frac{c_{n}}{\theta^{n}}\right)_{n \geqslant 0}$ is decreasing to ℓ. To show the inequality $l \leqslant \ell$, we shall prove that the propositions

$$
\begin{equation*}
B^{\prime} \cap\left[\frac{c_{n}}{\theta^{2^{n}}+1}, \frac{c_{n}}{\theta^{2^{n}}}\right] \neq \emptyset \quad \Rightarrow \quad B^{\prime} \cap\left[0, \frac{c_{n}}{\theta^{2^{n}}+1}\right] \neq \emptyset \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
B^{\prime} \cap\left[\frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_{n}}{\theta^{2^{n}}+1}\right] \neq \emptyset \Rightarrow B^{\prime} \cap\left[0, \frac{c_{n+1}}{\theta^{2^{n+1}}}\right] \neq \emptyset \tag{6}
\end{equation*}
$$

are true for all non-negative rational integers n. Indeed, if $l>\ell$, then there is $n_{0} \in \mathbb{N}$ such that $\frac{c_{n}}{\theta \theta^{n_{0}}}<l$. Let again n_{0} be the smallest rational integer satisfying the last inequality. Then, from the relation $l \leqslant \frac{1}{\theta+1}<\frac{1}{\theta}=\frac{c_{0}}{\theta^{2^{0}}}$, we have $\left.n_{0} \geqslant 1, l \in\right] \frac{c_{n_{0}}}{\theta 2^{n_{0}}}$, $\left.\frac{c_{n_{0}-1}}{\theta^{2^{n_{0}-1}}}\right] \cap B^{\prime}$ and so by (5) (respectively, by (6)) we obtain a contradiction when $l>\frac{c_{n_{0}-1}}{\theta^{2^{n_{0}-1}}+1}$ (respectively, when $l \leqslant \frac{c_{n_{0}-1}}{\theta^{2^{n_{0}-1}+1}}$), since l is the smallest limit point of B. To show the relation (5) we consider the real function $f(x)=f_{n}(x):=-\theta^{2^{n}} x+c_{n}$, where $n \in \mathbb{N} \cup\{0\}$. It is clear that f is injective and continuous, and

$$
\begin{equation*}
f\left(\left[\frac{c_{n}}{\theta^{2^{n}}+1}, \frac{c_{n}}{\theta^{2^{n}}}\right]\right) \subset\left[0, \frac{c_{n}}{\theta^{2^{n}}+1}\right] \tag{7}
\end{equation*}
$$

Using the equality $c_{n+1}=c_{n}\left(\theta^{2^{n}}-1\right)$, a simple induction shows that c_{n} is a monic polynomial in θ of degree $2^{n}-1$ and with coefficients in $\{-1,1\}$; thus $c_{n}=\theta^{2^{n}-1} \pm \theta^{2^{n}-2} \pm \cdots \pm 1, \forall n \in \mathbb{N}$, and so

$$
\begin{equation*}
\pm f(B) \subset B \tag{8}
\end{equation*}
$$

Hence, if $\left(a_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct elements of B such that $\lim _{k \rightarrow \infty} a_{k}=a$ and $a \in\left[\frac{c_{n}}{\theta 2^{n^{n}}+1}, \frac{c_{n}}{\theta 2^{2^{n}}}\right]$, then the equality $\lim _{k \rightarrow \infty} f\left(a_{k}\right)=f(a)$ together with (7) and (8) give $f(a) \in B^{\prime} \cap\left[0, \frac{c_{n}}{\theta^{2^{n}}+1}\right]$, and so the implication (5) is true. To prove the relation (6) notice first that we may suppose $\beta_{1}(\theta)>0$, as $0 \in B_{m}^{\prime}(\theta)$ for all $m \in \mathbb{N}$ when $\beta_{1}(\theta)=0$. It follows by Remark 2 of [2] that θ is a root of a non-zero polynomial with coefficients in $\{-1,0,1\}$; thus θ is an algebraic integer and B is contained in the ring of integers of the field $\mathbb{Q}(\theta)$. Now, set $g:=-f_{n+1}$. Then,

$$
\left.\left.\left.\left.g(] \sum_{k=1}^{N} \frac{c_{n+1}}{\theta^{2^{n+1} k}}, \sum_{k=1}^{N+1} \frac{c_{n+1}}{\theta^{2^{n+1} k}}\right]\right) \subset\right] \sum_{k=1}^{N-1} \frac{c_{n+1}}{\theta^{2^{n+1} k}}, \sum_{k=1}^{N} \frac{c_{n+1}}{\theta^{2^{n+1} k}}\right]
$$

where N runs through \mathbb{N} (by convention $\sum_{k=1}^{0} \frac{c_{n+1}}{\theta^{2^{n+1} k}}:=0$). Notice also that for each $\left.x \in\right] \frac{c_{n+1}}{\theta^{2 n+1}}, \frac{c_{n}}{\theta^{2^{n}}+1}$ [there exists a unique positive rational integer, say $N(x)$, such that

$$
\sum_{k=1}^{N(x)} \frac{c_{n+1}}{\theta^{2^{n+1} k}}<x \leqslant \sum_{k=1}^{N(x)+1} \frac{c_{n+1}}{\theta^{2^{n+1} k}}
$$

because $\sum_{k \geqslant 1} \frac{c_{n+1}}{\theta^{2^{n+1} k}}=\frac{c_{n+1}}{\theta^{2^{n+1}-1}}=\frac{c_{n+1}}{\left(\theta^{2^{n}}-1\right)\left(\theta^{2^{n}}+1\right)}=\frac{c_{n}}{\theta^{2^{n}}+1}$. Consequently, if $\left.t \in\right] \frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_{n}}{\theta^{2^{n}+1}}$ [and $\left(t_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct elements of B satisfying $\lim _{k \rightarrow \infty} t_{k}=t$, then $\lim _{k \rightarrow \infty} g\left(t_{k}\right)=g(t)$, and so $g(t) \in B^{\prime}$ (recall that g is injective and continuous, and by (8) we have $g(B) \subset B)$. Hence, $\left.\left.g(t) \in B^{\prime} \cap\right] \sum_{k=1}^{N(t)-1} \frac{c_{n+1}}{\theta^{2^{n+1} k}}, \sum_{k=1}^{N(t)} \frac{c_{n+1}}{\theta^{2^{n+1} k}}\right]$. Iterating the map g we deduce that $\left.\left.g^{(N(t))}(t) \in B^{\prime} \cap\right] 0, \frac{c_{n+1}}{\theta^{2 n+1}}\right]$, and so the implication (6) is true when $B^{\prime} \cap\left[\frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_{n}}{\theta^{2^{n}}+1}\right] \neq\left\{\frac{c_{n}}{\theta^{2^{n}}+1}\right\}$. Finally, let us consider the case where $B^{\prime} \cap\left[\frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_{n}}{\theta^{2^{n}}+1}\right]$ is reduced to the singleton $\left\{\frac{c_{n}}{\theta^{2^{n}}+1}\right\}$. Notice first by (7) and (8) that $\frac{c_{n}}{\theta^{2^{n}}+1}$ is a left-hand limit point of B. Furthermore, if $\left(s_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct elements of $\left.B \cap\right] \frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_{n}}{\theta^{2^{n}}+1}$ [such that $\lim _{k \rightarrow \infty} s_{k}=\frac{c_{n}}{\theta^{2^{n}}+1}$, then by the above for each $k \in \mathbb{N}$ there is $N_{k}:=N\left(s_{k}\right) \in \mathbb{N}$ such that

$$
\left.\left.g^{\left(N_{k}\right)}\left(s_{k}\right) \in\right] 0, \frac{c_{n+1}}{\theta^{2^{n+1}}}\right] \cap B
$$

thus if the set $E:=\left\{g^{\left(N_{k}\right)}\left(s_{k}\right), k \in \mathbb{N}\right\}$ is not finite, then B has a limit point which belongs to the interval $\left[0, \frac{c_{n+1}}{\theta^{2 n+1}}\right]$, and so (6) is true. Now, assume on the contrary that E is finite and let $\left.b \in B \cap] 0, \frac{c_{n+1}}{\theta^{2 n+1}}\right]$ such that $b=g^{\left(N_{k}\right)}\left(s_{k}\right)$ for infinitely many k. Writing $g^{\left(N_{k}\right)}\left(s_{k}\right)$ explicitly, the last equality gives

$$
\begin{equation*}
b=\gamma^{N_{k}} s_{k}-\gamma^{\left(N_{k}-1\right)} c_{n+1}-\cdots-\gamma c_{n+1}-c_{n+1} \tag{9}
\end{equation*}
$$

where $\gamma:=\theta^{2^{n+1}}$. Hence, if σ is an embedding of $\mathbb{Q}(\theta)$ into the complex field \mathbb{C}, sending θ to a conjugate over \mathbb{Q} of modulus at least 1 , then (9) implies

$$
\begin{aligned}
\sigma(b) & =\sigma(\gamma)^{N_{k}} \sigma\left(s_{k}\right)-\sigma\left(c_{n+1}\right) \frac{\sigma(\gamma)^{N_{k}}-1}{\sigma(\gamma)-1} \\
\sigma\left(s_{k}\right) & =\frac{\sigma(b)}{\sigma(\gamma)^{N_{k}}}+\sigma\left(c_{n+1}\right) \frac{1-\frac{1}{\sigma(\gamma)^{N_{k}}}}{\sigma(\gamma)-1}
\end{aligned}
$$

($\sigma(\gamma) \notin\{0,1\}$ because $\theta>1$), and so

$$
\begin{equation*}
\left|\sigma\left(s_{k}\right)\right| \leqslant|\sigma(b)|+2\left|\frac{\sigma\left(c_{n+1}\right)}{\sigma(\gamma)-1}\right| \tag{10}
\end{equation*}
$$

Notice also that if $\varepsilon_{0}+\varepsilon_{1} \theta+\cdots+\varepsilon_{d} \theta^{d}$ is a representation in B of some s_{k}, and if τ is an embedding of $\mathbb{Q}(\theta)$ into \mathbb{C} sending θ to a conjugate of modulus less than 1 , then

$$
\begin{equation*}
\left|\tau\left(s_{k}\right)\right| \leqslant m \sum_{k=0}^{d}|\tau(\theta)|^{k}<\frac{m}{1-|\tau(\theta)|} . \tag{11}
\end{equation*}
$$

It follows by (10) and (11) that the conjugates of the integer s_{k} of the field $\mathbb{Q}(\theta)$ are bounded; thus s_{k} takes at most a finite number of values and this is absurd, as $\left\{s_{k}, k \in \mathbb{N}\right\}$ is not finite.

Remark 1. By the same method as in the proof of Theorem 2, we easily obtain $l \notin] \frac{P_{n}}{\theta^{n}+1}, \frac{P_{n}}{\theta^{n}-1}\left[\right.$, where $n \in \mathbb{N}, P_{n}=$ $\varepsilon_{n-1} \theta^{n-1}+\varepsilon_{n-2} \theta^{n-2}+\cdots+\varepsilon_{0}$ and $\varepsilon_{i} \in\{-m, \ldots, 0, \ldots, m\}$. I am not able to prove (or disprove) the inclusion: $] 0,1[\subset$ $\left.\bigcup_{n \in \mathbb{N}}\right] \frac{P_{n}}{\theta^{n}+1}, \frac{P_{n}}{\theta^{n}-1}[$, which implies (1).

Remark 2. With the notation of the proof of Theorem 2, suppose $\beta \neq 0$. Then, each finite sum, say s, of the form $\frac{\varepsilon_{1}}{\theta}+$ $\cdots+\frac{\varepsilon_{N}}{\theta^{N}}$, where $\varepsilon_{i} \in\{-m, \ldots, 0, \ldots, m\}$ and $N \in \mathbb{N}$, does not belong to B^{\prime}. Indeed, if $\left(b_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct elements of B such that $\lim _{k \rightarrow \infty} b_{k}=s$, then $\theta^{N} b_{k}-\left(\varepsilon_{1} \theta^{N-1}+\cdots+\varepsilon_{N}\right) \in B$ and $\lim _{k \rightarrow \infty} \theta^{N} b_{k}-\varepsilon_{1} \theta^{N-1}-\cdots-\varepsilon_{N}=0$. In particular for $m=1$ we have $L_{1}(\theta):=\sup \left\{b^{\prime}, b^{\prime} \in B_{1}^{\prime}(\theta) \cap[0,1]\right\}<1$, since by Remark 2 of [2] there are $N \in \mathbb{N}$ and $\varepsilon_{i} \in\{-1,0,1\}$ such that $1=\frac{\varepsilon_{1}}{\theta}+\cdots+\frac{\varepsilon_{N}}{\theta^{N}}$; thus $0<\beta_{1}(\theta) \leqslant l_{1}(\theta) \leqslant \ell<\frac{1}{\theta}<L_{1}(\theta)<1$.

References

[1] P. Borwein, K.G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002) 767-780.
[2] Y. Bugeaud, On a property of Pisot numbers and related questions, Acta Math. Hungar. 73 (1996) 33-39.
[3] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansion $1=\sum_{i \geqslant 1} q^{-n_{i}}$ and related problems, Bull. Soc. Math. France 118 (1990) $377-390$.
[4] P. Erdős, I. Joó, F.J. Schnitzer, On Pisot numbers, Ann. Univ. Sci. Budapest 39 (1996) 95-99.
[5] P. Erdős, V. Komornik, Developments in non-integer bases, Acta Math. Hungar. 79 (1998) 57-83.
[6] T. Zaïmi, Approximation by polynomials with bounded coefficients, J. Number Theory 127 (2007) 103-117.
[7] T. Zaïmi, Une remarque sur le spectre des nombres de Pisot, C. R. Acad. Sci. Paris Ser. I 347 (2009) 5-8.

[^0]: E-mail address: toufikzaimi@yahoo.com.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2010.01.016

