

Number Theory

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A property of the spectra of non-Pisot numbers

Une propriété du spectre des réels autres que les nombres de Pisot

Toufik Zaïmi

Département de mathématiques, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria

ARTICLE INFO

Article history: Received 11 May 2009 Accepted after revision 8 January 2010 Available online 13 February 2010

Presented by Jean-Pierre Kahane

ABSTRACT

Let θ be a real number satisfying $1 < \theta < 2$, m a positive rational integer and $B_m(\theta)$ the set of polynomials with coefficients in $\{0, \pm 1, ..., \pm m\}$, evaluated at θ . We prove that $B_m(\theta)$ is everywhere dense when $0 \in B'_m(\theta)$, where $B'_m(\theta)$ is the derivative set of $B_m(\theta)$. We also show that if $B'_m(\theta) \cap [0, \frac{1}{\theta} \prod_{k \ge 0} (1 - \frac{1}{\theta^{2^k}})] = \emptyset$, then $B_m(\theta)$ is discrete.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soient θ un nombre réel satisfaisant $1 < \theta < 2$, *m* un entier rationnel positif et $B_m(\theta)$ l'ensemble des réels $P(\theta)$ pour *P* décrivant les polynômes à coefficients dans $\{0, \pm 1, \ldots, \pm m\}$. On montre que $B_m(\theta)$ est partout dense lorsque 0 est un élément de l'ensemble dérivé $B'_m(\theta)$ de $B_m(\theta)$. On prouve également que si $B'_m(\theta) \cap [0, \frac{1}{\theta} \prod_{k \ge 0} (1 - \frac{1}{\theta^{2^k}})] = \emptyset$, alors $B_m(\theta)$ est discret.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We continue the investigation of the distribution in the real line $\mathbb R$ of the elements of the sets

$$B = B_m(\theta) := \{\varepsilon_0 + \varepsilon_1 \theta + \dots + \varepsilon_n \theta^n, n \in \mathbb{N}, \varepsilon_k \in \{-m, \dots, 0, \dots, m\}\},\$$

where θ is a real number satisfying $1 < \theta < 2$, and *m* runs through the set \mathbb{N} of positive rational integers. The study of *B* has been initiated by Erdős, Joó and Komornik in [3], and followed by some authors (see for instance the references in [7]). A result of Bugeaud [2] asserts that all sets $B_m(\theta)$ are uniformly discrete if and only if θ is a Pisot number. A Pisot number is a real algebraic integer greater than 1, whose other conjugates over the field of the rationals \mathbb{Q} are of modulus less than 1. Recall also that a subset *X* of \mathbb{R} is uniformly discrete if the usual distance between two distinct elements of *X* is greater than a positive constant depending only on *X*; a uniformly discrete set is discrete, that is a set with no finite limit point. Notice also that $B_m(\theta)$ is uniformly discrete if and only if the quantity $\beta = \beta_m(\theta) := \inf\{b, b \in B_m(\theta), b > 0\}$ satisfies $\beta_{2m}(\theta) > 0$, or equivalently if and only if $0 \notin B'_{2m}(\theta)$, where $B' = B'_m(\theta)$ is the set of limit points of $B_m(\theta)$. In [5] Erdős and Komornik considered the general case where the real number θ is not necessary less than 2. A corollary of one of their results asserts that if θ is not a Pisot number and $\theta \in [1, \frac{1+\sqrt{5}}{2}]$ (respectively, and $\theta \in [\frac{1+\sqrt{5}}{2}, 2[$), then $B_1(\theta)$ is not discrete (respectively, then $B_2(\theta)$ is not discrete? The following result gives a partial answer to this problem:

E-mail address: toufikzaimi@yahoo.com.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.01.016

Theorem 1. The set $B_m(\theta)$ is everywhere dense if and only if $\beta_m(\theta) = 0$.

Combined with the above mentioned result of Erdős and Komornick, Theorem 1 yields:

Corollary. If θ is not a Pisot number, $m \ge 2$ and $\theta \in [1, \frac{1+\sqrt{5}}{2}]$ (respectively, $m \ge 3$ and $\theta \in [\frac{1+\sqrt{5}}{2}, 2[$), then $B_m(\theta)$ is everywhere dense.

Recall that the question whether there is a non-Pisot number, say again θ , satisfying $\beta_1(\theta) > 0$, has been cited in [4] and remains open. From the above we also see that a possible way to show that all sets $B_m(\theta)$ are everywhere dense when θ is not a Pisot number, is to prove the implication

$$B'_{m}(\theta) \neq \emptyset \quad \Rightarrow \quad \beta_{m}(\theta) = 0, \tag{1}$$

for m = 1 and $\theta \in [1, \frac{1+\sqrt{5}}{2}]$ (respectively, for $m \in \{1, 2\}$ and $\theta \in [\frac{1+\sqrt{5}}{2}, 2[$). In [1] Borwein and Hare have shown that $B_m(\theta)$ is discrete when $B_m(\theta) \cap [0, \frac{m}{\theta-1}]$ is finite, and the author [6] has proved that the bound $\frac{m}{\theta-1}$ may be replaced by the (non-optimal) constant $\frac{1}{\theta+1}$ without affecting the discreteness property of $B_m(\theta)$. The second aim of this note is to improve this last result:

Theorem 2. The following propositions are equivalent:

- (i) The set $B_m(\theta)$ is discrete.
- (ii) The set $B'_m(\theta) \cap [0, \frac{1}{\theta} \prod_{k \ge 0} (1 \frac{1}{\theta^{2k}})]$ is empty.

2. The proofs

Proof of Theorem 1. Trivially we have $\beta = 0$ when *B* is dense in \mathbb{R} . To make clear the proof of the converse we shall use the next result.

Lemma. If $\beta = 0$, then the following properties hold:

- (i) For any $\varepsilon > 0$ there exists $b \in B$ such that $\varepsilon < b \leq \theta \varepsilon$.
- (ii) Each element of B is a limit point of B from both sides.

Proof. (i) Since $\beta = 0$, there is $b_0 \in B$ such that $0 < b_0 < \varepsilon$. Let *N* be the greatest rational integer such that $\theta^N b_0 \leq \varepsilon$. Then, $\varepsilon < \theta^{N+1}b_0$, $\varepsilon < \theta^{N+1}b_0 \leq \theta\varepsilon$ and Lemma (i) follows, as $N + 1 \in \mathbb{N}$.

(ii) Since $\beta \in B'$ and B = -B, there is a decreasing sequence, say $(b_k)_{k \in \mathbb{N}}$, of distinct elements of B such that $\lim_{k \to \infty} b_k = 0$. Let $\varepsilon_0 + \varepsilon_1 \theta + \cdots + \varepsilon_n \theta^n$, where $\varepsilon_i \in \{-m, \ldots, 0, \ldots, m\}$ and $n \in \mathbb{N}$, be a representation of an element $b \in B$. Then, $\theta^{n+1}b_k + b \in B$ and the sequence $(\theta^{n+1}b_k + b)_{k \in \mathbb{N}}$ is decreasing to b. Considering the sequence $(-\theta^{n+1}b_k + b)_{k \in \mathbb{N}}$, we see that b is a left-hand limit point of B. \Box

Let us return to the proof of Theorem 1, and assume on the contrary that $\beta = 0$ and *B* is not everywhere dense. Then, there exist positive numbers, say t_0 and δ , such that $[t_0, t_0 + \delta] \cap B = \emptyset$, as B = -B and $0 \in B'$. Let $P = P(\delta) := \{t \in \mathbb{R}, t > 0, [t, t+\delta] \cap B = \emptyset\}$. Then, $t_0 \in P$ and so $P \neq \emptyset$. We shall obtain a contradiction by considering the quantity $\alpha := \inf P$. First suppose $\alpha \in P$, and let

$$x \in \left[\max\left(\alpha - \frac{\delta}{2}, 0\right), \alpha\right[.$$
 (2)

Then, $0 < x < \alpha$ and $[x, x + \delta] \cap B \neq \emptyset$. Let $b := \varepsilon_0 + \varepsilon_1 \theta + \dots + \varepsilon_n \theta^n$, where $\varepsilon_i \in \{-m, \dots, 0, \dots, m\}$ and $n \in \mathbb{N}$, be an element of $[x, x + \delta]$. Then, $b \in B$, and from the relations $x \leq b \leq x + \delta < \alpha + \delta$ and $[\alpha, \alpha + \delta] \cap B = \emptyset$, we have

 $b \in [x, \alpha[. \tag{3})]$

Since $\theta < 2$, Lemma (i) asserts that there is $b' \in B \cap]\frac{\alpha-x}{\theta^{n+1}}$, $2\frac{\alpha-x}{\theta^{n+1}}$ [, and by (2) we deduce that $\alpha - x < b'\theta^{n+1} < 2(\alpha - x) < \delta$. The last inequalities together with (3) yield $\alpha < b'\theta^{n+1} + b < \alpha + \delta$, and these relations lead to a contradiction, since $b'\theta^{n+1} + b \in B$ and $B \cap]\alpha, \alpha + \delta = \emptyset$. Now, assume that $\alpha \notin P$. Then, $[\alpha, \alpha + \delta] \cap B \neq \emptyset$ and there is a decreasing sequence, say $(t_k)_{k \in \mathbb{N}}$, of distinct elements of P such that $\lim_{k \to \infty} t_k = \alpha$ and $t_k \leq \alpha + \delta$ for all $k \in \mathbb{N}$. Let $b \in [\alpha, \alpha + \delta] \cap B$. It follows by the relations $[t_k, t_k + \delta] \cap B = \emptyset$ and $\alpha < t_k \leq \alpha + \delta < t_k + \delta$ that

$$\alpha \leqslant b < t_k, \quad \forall k \in \mathbb{N}.$$

Letting *k* tend to infinity in (4), we obtain $\alpha = b$ and so $[\alpha, \alpha + \delta] \cap B = \{\alpha\}$; this last equality leads also to a contradiction because by Lemma (ii) the number α is a right-hand limit point of *B* and so the set $[\alpha, \alpha + \delta] \cap B$ contains certainly more than one element. \Box

Proof of the Corollary. Suppose that θ is not a Pisot number and $\theta \in \left[\frac{1+\sqrt{5}}{2}, 2\right]$ (respectively, and $\theta \in \left[1, \frac{1+\sqrt{5}}{2}\right]$). Then, $\beta_3(\theta) = 0$ (respectively, $B_1(\theta)$ is not discrete and so $\beta_2(\theta) = 0$ (this last equality has also been proved in [4])) and the result follows immediately by Theorem 1, since $B_m(\theta) \subset B_{m+1}(\theta)$ for all $m \in \mathbb{N}$. \Box

Proof of Theorem 2. Set $l = l_m(\theta) := \inf\{b', b' \in B' \cap [0, \infty[\} \text{ and } \ell := \frac{1}{\theta} \prod_{k \ge 0} (1 - \frac{1}{\theta^{2^k}})$. It is clear that $B' \cap [0, \ell] = \emptyset$ when B is discrete. Now, assume that B is not discrete. Then, Theorem 3 of [6] asserts that $l \le \frac{1}{\theta+1}$. Let $(c_n)_{n \ge 0}$ be the sequence defined by $c_0 = 1$ and

$$c_n = \prod_{0 \leqslant k \leqslant n-1} (\theta^{2^k} - 1) \text{ for } n \in \mathbb{N}$$

Then, $\frac{c_{n+1}}{\theta^{2^{n+1}}} = \frac{(\theta^{2^n} - 1)c_n}{\theta^{2^{n+1}}} < \frac{c_n}{\theta^{2^n} + 1} < \frac{c_n}{\theta^{2^n}},$ $\frac{c_n}{\theta^{2^n}} = \frac{1}{\theta} \prod_{0 \le k \le n-1} \left(1 - \frac{1}{\theta^{2^k}}\right)$

and so $(\frac{c_n}{a^{2n}})_{n \ge 0}$ is decreasing to ℓ . To show the inequality $l \le \ell$, we shall prove that the propositions

$$B' \cap \left[\frac{c_n}{\theta^{2^n} + 1}, \frac{c_n}{\theta^{2^n}}\right] \neq \emptyset \quad \Rightarrow \quad B' \cap \left[0, \frac{c_n}{\theta^{2^n} + 1}\right] \neq \emptyset$$
(5)

and

$$B' \cap \left[\frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_n}{\theta^{2^n} + 1}\right] \neq \emptyset \quad \Rightarrow \quad B' \cap \left[0, \frac{c_{n+1}}{\theta^{2^{n+1}}}\right] \neq \emptyset \tag{6}$$

are true for all non-negative rational integers *n*. Indeed, if $l > \ell$, then there is $n_0 \in \mathbb{N}$ such that $\frac{c_{n_0}}{\theta^{2^{n_0}}} < l$. Let again n_0 be the smallest rational integer satisfying the last inequality. Then, from the relation $l \leq \frac{1}{\theta+1} < \frac{1}{\theta} = \frac{c_0}{\theta^{2^0}}$, we have $n_0 \ge 1$, $l \in]\frac{c_{n_0}}{\theta^{2^{n_0}}}$, $\frac{c_{n_0-1}}{\theta^{2^{n_0-1}}}] \cap B'$ and so by (5) (respectively, by (6)) we obtain a contradiction when $l > \frac{c_{n_0-1}}{\theta^{2^{n_0-1}}+1}$ (respectively, when $l \leq \frac{c_{n_0-1}}{\theta^{2^{n_0-1}}+1}$), since *l* is the smallest limit point of *B*. To show the relation (5) we consider the real function $f(x) = f_n(x) := -\theta^{2^n}x + c_n$, where $n \in \mathbb{N} \cup \{0\}$. It is clear that *f* is injective and continuous, and

$$f\left(\left[\frac{c_n}{\theta^{2^n}+1},\frac{c_n}{\theta^{2^n}}\right]\right) \subset \left[0,\frac{c_n}{\theta^{2^n}+1}\right].$$
(7)

Using the equality $c_{n+1} = c_n(\theta^{2^n} - 1)$, a simple induction shows that c_n is a monic polynomial in θ of degree $2^n - 1$ and with coefficients in $\{-1, 1\}$; thus $c_n = \theta^{2^n - 1} \pm \theta^{2^n - 2} \pm \cdots \pm 1$, $\forall n \in \mathbb{N}$, and so

$$\pm f(B) \subset B. \tag{8}$$

Hence, if $(a_k)_{k \in \mathbb{N}}$ is a sequence of distinct elements of *B* such that $\lim_{k\to\infty} a_k = a$ and $a \in [\frac{c_n}{\theta^{2^n}+1}, \frac{c_n}{\theta^{2^n}}]$, then the equality $\lim_{k\to\infty} f(a_k) = f(a)$ together with (7) and (8) give $f(a) \in B' \cap [0, \frac{c_n}{\theta^{2^n}+1}]$, and so the implication (5) is true. To prove the relation (6) notice first that we may suppose $\beta_1(\theta) > 0$, as $0 \in B'_m(\theta)$ for all $m \in \mathbb{N}$ when $\beta_1(\theta) = 0$. It follows by Remark 2 of [2] that θ is a root of a non-zero polynomial with coefficients in $\{-1, 0, 1\}$; thus θ is an algebraic integer and *B* is contained in the ring of integers of the field $\mathbb{Q}(\theta)$. Now, set $g := -f_{n+1}$. Then,

$$g\left(\left[\sum_{k=1}^{N}\frac{c_{n+1}}{\theta^{2^{n+1}k}},\sum_{k=1}^{N+1}\frac{c_{n+1}}{\theta^{2^{n+1}k}}\right]\right)\subset\left[\sum_{k=1}^{N-1}\frac{c_{n+1}}{\theta^{2^{n+1}k}},\sum_{k=1}^{N}\frac{c_{n+1}}{\theta^{2^{n+1}k}}\right],$$

where *N* runs through \mathbb{N} (by convention $\sum_{k=1}^{0} \frac{c_{n+1}}{\theta^{2^{n+1}k}} := 0$). Notice also that for each $x \in \left[\frac{c_{n+1}}{\theta^{2^{n+1}}}, \frac{c_n}{\theta^{2^n}+1}\right]$ there exists a unique positive rational integer, say N(x), such that

$$\sum_{k=1}^{N(x)} \frac{c_{n+1}}{\theta^{2^{n+1}k}} < x \leqslant \sum_{k=1}^{N(x)+1} \frac{c_{n+1}}{\theta^{2^{n+1}k}}$$

because $\sum_{k \ge 1} \frac{c_{n+1}}{\theta^{2n+1}k} = \frac{c_{n+1}}{\theta^{2n+1}-1} = \frac{c_{n+1}}{(\theta^{2n}-1)(\theta^{2n}+1)} = \frac{c_n}{\theta^{2n}+1}$. Consequently, if $t \in]\frac{c_{n+1}}{\theta^{2n+1}}$, $\frac{c_n}{\theta^{2n}+1}[$ and $(t_k)_{k \in \mathbb{N}}$ is a sequence of distinct elements of *B* satisfying $\lim_{k\to\infty} t_k = t$, then $\lim_{k\to\infty} g(t_k) = g(t)$, and so $g(t) \in B'$ (recall that *g* is injective and continuous, and by (8) we have $g(B) \subset B$). Hence, $g(t) \in B' \cap]\sum_{k=1}^{N(t)-1} \frac{c_{n+1}}{\theta^{2n+1}k}$, $\sum_{k=1}^{N(t)} \frac{c_{n+1}}{\theta^{2n}+1}]$. Iterating the map *g* we deduce that $g^{(N(t))}(t) \in B' \cap]0$, $\frac{c_{n+1}}{\theta^{2n+1}}]$, and so the implication (6) is true when $B' \cap [\frac{c_{n+1}}{\theta^{2n+1}}, \frac{c_n}{\theta^{2n}+1}] \neq \{\frac{c_n}{\theta^{2n}+1}\}$. Finally, let us consider the case where $B' \cap [\frac{c_{n+1}}{\theta^{2n+1}}, \frac{c_n}{\theta^{2n}+1}]$ is reduced to the singleton $\{\frac{c_n}{\theta^{2n}+1}\}$. Notice first by (7) and (8) that $\frac{c_n}{\theta^{2n}+1}$ is a left-hand limit point of *B*. Furthermore, if $(s_k)_{k\in\mathbb{N}}$ is a sequence of distinct elements of $B \cap]\frac{c_{n+1}}{\theta^{2n+1}}, \frac{c_n}{\theta^{2n}+1}[$ such that $\lim_{k\to\infty} s_k = \frac{c_n}{\theta^{2n}+1}$, then by the above for each $k \in \mathbb{N}$ there is $N_k := N(s_k) \in \mathbb{N}$ such that

$$g^{(N_k)}(s_k) \in \left]0, \frac{c_{n+1}}{\theta^{2^{n+1}}}\right] \cap B;$$

thus if the set $E := \{g^{(N_k)}(s_k), k \in \mathbb{N}\}$ is not finite, then *B* has a limit point which belongs to the interval $[0, \frac{c_{n+1}}{\theta^{2^{n+1}}}]$, and so (6) is true. Now, assume on the contrary that *E* is finite and let $b \in B \cap [0, \frac{c_{n+1}}{\theta^{2^{n+1}}}]$ such that $b = g^{(N_k)}(s_k)$ for infinitely many *k*. Writing $g^{(N_k)}(s_k)$ explicitly, the last equality gives

$$b = \gamma^{N_k} s_k - \gamma^{(N_k - 1)} c_{n+1} - \dots - \gamma c_{n+1} - c_{n+1},$$
(9)

where $\gamma := \theta^{2^{n+1}}$. Hence, if σ is an embedding of $\mathbb{Q}(\theta)$ into the complex field \mathbb{C} , sending θ to a conjugate over \mathbb{Q} of modulus at least 1, then (9) implies

$$\sigma(b) = \sigma(\gamma)^{N_k} \sigma(s_k) - \sigma(c_{n+1}) \frac{\sigma(\gamma)^{N_k} - 1}{\sigma(\gamma) - 1}$$
$$\sigma(s_k) = \frac{\sigma(b)}{\sigma(\gamma)^{N_k}} + \sigma(c_{n+1}) \frac{1 - \frac{1}{\sigma(\gamma)^{N_k}}}{\sigma(\gamma) - 1}$$

 $(\sigma(\gamma) \notin \{0, 1\}$ because $\theta > 1)$, and so

$$\left|\sigma(s_{k})\right| \leq \left|\sigma(b)\right| + 2\left|\frac{\sigma(c_{n+1})}{\sigma(\gamma) - 1}\right|.$$
(10)

Notice also that if $\varepsilon_0 + \varepsilon_1 \theta + \dots + \varepsilon_d \theta^d$ is a representation in *B* of some s_k , and if τ is an embedding of $\mathbb{Q}(\theta)$ into \mathbb{C} sending θ to a conjugate of modulus less than 1, then

$$\left|\tau(s_k)\right| \leq m \sum_{k=0}^{d} \left|\tau(\theta)\right|^k < \frac{m}{1 - \left|\tau(\theta)\right|}.$$
(11)

It follows by (10) and (11) that the conjugates of the integer s_k of the field $\mathbb{Q}(\theta)$ are bounded; thus s_k takes at most a finite number of values and this is absurd, as $\{s_k, k \in \mathbb{N}\}$ is not finite. \Box

Remark 1. By the same method as in the proof of Theorem 2, we easily obtain $l \notin]\frac{P_n}{\theta^n+1}$, $\frac{P_n}{\theta^n-1}[$, where $n \in \mathbb{N}$, $P_n = \varepsilon_{n-1}\theta^{n-1} + \varepsilon_{n-2}\theta^{n-2} + \cdots + \varepsilon_0$ and $\varepsilon_i \in \{-m, \ldots, 0, \ldots, m\}$. I am not able to prove (or disprove) the inclusion: $]0, 1[\subset \bigcup_{n \in \mathbb{N}}]\frac{P_n}{\theta^n+1}, \frac{P_n}{\theta^n-1}[$, which implies (1).

Remark 2. With the notation of the proof of Theorem 2, suppose $\beta \neq 0$. Then, each finite sum, say *s*, of the form $\frac{\varepsilon_1}{\theta} + \cdots + \frac{\varepsilon_N}{\theta^N}$, where $\varepsilon_i \in \{-m, \ldots, 0, \ldots, m\}$ and $N \in \mathbb{N}$, does not belong to *B'*. Indeed, if $(b_k)_{k \in \mathbb{N}}$ is a sequence of distinct elements of *B* such that $\lim_{k\to\infty} b_k = s$, then $\theta^N b_k - (\varepsilon_1 \theta^{N-1} + \cdots + \varepsilon_N) \in B$ and $\lim_{k\to\infty} \theta^N b_k - \varepsilon_1 \theta^{N-1} - \cdots - \varepsilon_N = 0$. In particular for m = 1 we have $L_1(\theta) := \sup\{b', b' \in B'_1(\theta) \cap [0, 1]\} < 1$, since by Remark 2 of [2] there are $N \in \mathbb{N}$ and $\varepsilon_i \in \{-1, 0, 1\}$ such that $1 = \frac{\varepsilon_1}{\theta} + \cdots + \frac{\varepsilon_N}{\theta^N}$; thus $0 < \beta_1(\theta) \leq l_1(\theta) \leq l < \frac{1}{\theta} < L_1(\theta) < 1$.

References

- [1] P. Borwein, K.G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002) 767–780.
- [2] Y. Bugeaud, On a property of Pisot numbers and related questions, Acta Math. Hungar. 73 (1996) 33-39.
- [3] P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansion $1 = \sum_{i \ge 1} q^{-n_i}$ and related problems, Bull. Soc. Math. France 118 (1990) 377–390. [4] P. Erdős, I. Joó, F.J. Schnitzer, On Pisot numbers, Ann. Univ. Sci. Budapest 39 (1996) 95–99.
- [5] P. Erdős, V. Komornik, Developments in non-integer bases, Acta Math. Hungar. 79 (1998) 57–83.
- [6] T. Zaïmi, Approximation by polynomials with bounded coefficients, J. Number Theory 127 (2007) 103–117.
- [7] T. Zaïmi, Une remarque sur le spectre des nombres de Pisot, C. R. Acad. Sci. Paris Ser. I 347 (2009) 5–8.