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In this Note, by using the theory of stochastic differential equations (SDE), we prove
uniqueness of measure-valued solutions and Lp-solutions to degenerate second order
Fokker–Planck equations under weak conditions on the coefficients. Our uniqueness results
are based on the natural connection between Fokker–Planck equations and SDEs.
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r é s u m é

Dans cette Note, en utilisant la théorie des équations différentielles stochastiques (EDS),
nous démontrons l’unicité de solutions Lp et à valeurs mesures pour des équations de
Fokker–Planck du second ordre dégénérées, sous des conditions faibles sur les coefficients.
Nos résultats d’unicité sont fondés sur le lien naturel existant entre les équations de
Fokker–Planck et les EDS.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

Let W
d := C([0,1];R

d) be the space of all continuous functions from [0,1] to R
d . Let Wt be the canonical filtration

generated by the coordinate process Wt(ω) = ω(t), where ω ∈ W
d . Write W := W1. Let ν be the standard Wiener measure

on (Wd,W ) so that (t,ω) → Wt(ω) is a standard d-dimensional Brownian motion.
Let (Xt)t∈[0,1] be a continuous Wt -adapted process and solve the following SDE in R

d:

dXt = σt(Xt)dWt + bt(Xt)dt, (1)

where σ : [0,1] × R
d → R

d × R
d and b : [0,1] × R

d → R
d are two bounded measurable functions. Denote by μt the law of

Xt in R
d , i.e.: for any ϕ ∈ C∞

0 (Rd)

∫

Rd

ϕ(x)μt(dx) = Eϕ(Xt). (2)
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Write Lt(x) = bi
t(x)∂i + 1

2 [σ ik
t σ

jk
t ](x)∂2

i j . By Itô’s formula, μt solves the following Fokker–Planck equation in the sense of
distribution:

∂tμt = L∗
t μt, (3)

where L∗
t is the adjoint operator of Lt . More precisely, for any ϕ ∈ C∞

0 (Rd) d
dt

∫
Rd ϕ(x)μt(dx) = ∫

Rd Ltϕ(x)μt(dx), where the
initial condition means that μt weakly * converges to μ0 as t → 0. In particular, if the law of Xt is absolutely continuous
with respect to Lebesgue measure, i.e., μt(dx) = ut(x)dx, then ut(x) solves the following PDE in the weak sense:

∂t ut = L∗
t ut . (4)

Let P (Rd) be the set of all probability measures on (Rd, B(Rd)). It is well known from [1] that if σ ik is uniformly non-
degenerate and Lipschitz continuous, b is locally integrable and coercive, then the uniqueness for (3) holds in P (Rd), at least
if the initial measure has finite entropy. In the degenerate case, in order to prove the uniqueness for (4), one usually needs
to impose some regularity on the solution. For example, Le Bris and Lions [6] proved the uniqueness of solutions to (4) for a
given initial condition in the following class: {u ∈ L∞(0,1; (L1 ∩ L∞)(Rd)), σ t∇u ∈ L2(0,1; L2(Rd))}, where σ t denotes the
transpose of σ . However, to the best of our knowledge, if σ is degenerate, there are only a few results about the uniqueness
of measure-valued solutions to (3) and L p-solutions to (4).

For p � 1, define M p(Rd) := {u ∈ L p(0,1; L p
loc(R

d)); u � 0 and
∫

Rd ut(x)dx = 1, ∀t ∈ [0,1]}. Below, by B R := {x ∈ R
d:

|x| � R} we denote the ball around zero in R
d . Our main results are:

Theorem 1.1. Assume that σ and b are bounded measurable functions and for some q ∈ [1,∞] and any R > 0, there exists a real
function f R ∈ Lq([0,1] × B R) such that for almost all (t, x, y) ∈ [0,1] × B R × B R

2
〈
x − y,bt(x) − bt(y)

〉 + ∥∥σt(x) − σt(y)
∥∥2 �

(
f R,t(x) + f R,t(y)

) · |x − y|2. (5)

Then for any given probability distribution density ρ , there is at most one weak solution ut to PDE (4) in the class M p(Rd), where
p = q

q−1 , with u0 = ρ .

Remark 1.2. Condition (5) is satisfied if for some q ∈ (1,∞], b ∈ Lq(0,1; W q,1
loc (Rd)), σ ∈ Lq∨2(0,1; W q∨2,1

loc (Rd)). Indeed, in
this case, there exists a constant Cd > 0 such that for almost all (t, x, y) ∈ [0,1] × B R × B R (cf. [2, Lemmas A.2, A.3] or [8,
Lemma 3.7]) |bt(x)−bt(y)| � Cd · (MR |∇bt |(x)+ MR |∇bt |(y)) · |x − y| and ‖σt(x)−σt(y)‖ � Cd · (MR |∇σt |(x)+ MR |∇σt |(y)) ·
|x − y|, where MR g(x) := sup0<r<R −

∫
Br

g(x + y)dy denotes the maximal function of g . By the boundedness of the maximal

operator in Lq (cf. [7]), one knows that MR |∇b·| ∈ Lq([0,1] × B R) and MR |∇σ·| ∈ Lq∨2([0,1] × B R).

Theorem 1.3. Assume that σ and b are bounded measurable functions and for some q ∈ [1,∞] and any R > 0, there exists a real
function f R ∈ Lq([0,1] × B R) such that for almost all (t, x) ∈ [0,1] × B R and all y ∈ B R

2
〈
x − y,bt(x) − bt(y)

〉 + ∥∥σt(x) − σt(y)
∥∥2 � f R,t(x) · |x − y|2. (6)

Suppose that there exists a solution ut(x) to (4) in the class M p(Rd), where p = q
q−1 . Then for any measure-valued solution μt to (3)

in P (Rd) with initial value μ0(dx) = u0(x)dx, μt(dx) = ut(x)dx, ∀t ∈ [0,1].

Remark 1.4. Condition (6) is satisfied if for some q ∈ (d,∞], b ∈ Lq(0,1; W q,1
loc (Rd)), σ ∈ Lq∨2(0,1; W q∨2,1

loc (Rd)). Indeed, in
this case, there exists a constant Cd,q > 0 such that for almost all (t, x, y) ∈ [0,1] × B R × B R (cf. [3, p. 143, Theorem 3]),
|bt(x) − bt(y)| � Cd,q · (MR |∇bt |q(x))1/q · |x − y| and ‖σt(x) − σt(y)‖ � Cd,q · (MR |∇σt |q(x))1/q · |x − y|. Since b and σ are
continuous by Sobolev’s embedding theorem, the above two inequalities hold for all y ∈ B R .

Theorems 1.1 and 1.3 will be proven in the next section. Our argument is based on the representation (2) (see Theo-
rem 2.5 below) and Yamada–Watanbe’s theorem (cf. [5]).

2. Proofs of main results

For proving our main results, we first recall some facts from the theories of SDEs and PDEs.

Definition 2.1 (Martingale solutions). Given μ0 ∈ P (Rd), a probability measure Pμ0 on (Wd,W ) is called a martingale solu-
tion of SDE (1) with initial distribution μ0 if Pμ0 ◦ ω−1

0 = μ0 and for any ϕ ∈ C∞
0 (Rd), ϕ(ωt) − ϕ(ω0) − ∫ t

0 Lsϕ(ωs)ds is an
Wt -martingale under Pμ0 .
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Definition 2.2 (Weak solutions). Let μ0 ∈ P (Rd). We say that Eq. (1) has a weak solution with initial law μ0 if there exist
a stochastic basis (Ω,F , P ; (Ft)t∈[0,1]), a R

d-valued continuous (Ft)-adapted stochastic process X and a d-dimensional
standard (Ft)-Brownian motions (Wt)t∈[0,1] such that X0 has law μ0 and Xt = X0 + ∫ t

0 bs(Xs)ds + ∫ t
0 σs(Xs)dW s , ∀t � 0,

a.s. This solution is denoted by (Ω,F , P ; (Ft)t∈[0,1]; W , X).

The following two propositions are well known (cf. [5, Chapter IV, Theorem 1.1 and Proposition 2.1]).

Proposition 2.3 (Equivalence between martingale solutions and weak solutions). Given μ0 ∈ P (Rd) and let Pμ0 be a martingale
solution of SDE (1). Then there exists a weak solution (Ω,F , P ; (Ft)t∈[0,1]; W , X) to SDE (1) such that P ◦ X−1 = Pμ0 .

Proposition 2.4. Given two weak solutions to SDE (1) (Ω(i),F (i), P (i); (F (i)
t )t∈[0,1]; W (i), X (i)), i = 1,2, with the same initial law

μ0 ∈ P (Rd), there exists a stochastic basis (Ω,F , P ; (Ft)t∈[0,1]), a standard d-dimensional (Ft)-Brownian motion W and two

continuous (Ft)-adapted processes Y (i) , i = 1,2, such that P (Y (1)
0 = Y (2)

0 ) = 1 and (Ω,F , P ; (Ft)t∈[0,1]; W , Y (i)), i = 1,2, are
two weak solutions of (1), and X (i) and Y (i) have the same laws in W

d for i = 1,2.

The following result is due to Figalli [4, Theorem 2.6].

Theorem 2.5. Assume that σ and b are bounded measurable functions. Given μ0 ∈ P (Rd), let μt ∈ P (Rd) be a measure-valued
solution of PDE (3) with initial value μ0 . Then there exists a martingale solution Pμ0 to SDE (1) with initial distribution μ0 such that
for any ϕ ∈ C∞

0 (Rd),
∫

Rd ϕ(x)μt(dx) = ∫
Wd ϕ(ωt)Pμ0 (dω), ∀t ∈ [0,1].

We are now in a position to give the proofs of our main results.

Proof of Theorem 1.1. Let u(i)
t , i = 1,2, be two weak solutions of (4) in the class M p(Rd) with the same initial value u0.

By Theorem 2.5, there exists two martingale solutions P (i)
u0 , i = 1,2, to SDE (1) with the same initial law u0(x)dx such that

for any ϕ ∈ C∞
0 (Rd)

∫

Rd

ϕ(x)u(i)
t (x)dx =

∫

Wd

ϕ(ωt)P (i)
u0 (dω), i = 1,2. (7)

By Propositions 2.3 and 2.4, there are a common stochastic basis (Ω,F , P ; (Ft)t∈[0,1]), a standard d-dimensional

(Ft)-Brownian motion W and two continuous (Ft)-adapted processes Y (i) , i = 1,2, such that P (Y (1)
0 = Y (2)

0 ) = 1 and

for i = 1,2, and Y (i) has law P (i)
u0 in (Wd,W ),

Y (i)
t = Y (i)

0 +
t∫

0

bs
(
Y (i)

s
)

ds +
t∫

0

σs
(
Y (i)

s
)

dW s. (8)

Set now Zt := Y (1)
t − Y (2)

t and for R > 0, τR := inf{t ∈ [0,1]: |Y (1)
t | ∨ |Y (2)

t | � R}. By Itô’s formula, for any δ > 0, we have

log

( |Zt∧τR |2
δ2

+ 1

)
=

t∧τR∫
0

2〈Zs,bs(Y (1)
s ) − bs(Y (2)

s )〉 + ‖σs(Y (1)
s ) − σs(Y (2)

s )‖2

|Zs|2 + δ2
ds

+ 2

t∧τR∫
0

〈Zs, (σs(Y (1)
s ) − σs(Y (2)

s ))dW s〉
|Zs|2 + δ2

− 2

t∧τR∫
0

|(σs(Y (1)
s ) − σs(Y (2)

s ))t · Zs|2
(|Zs|2 + δ2)2

ds. (9)

Let ρ be a nonnegative smooth function on R
d with support in {x ∈ R

d: |x| < 1} and
∫

Rd ρ(x)dx = 1. For ε ∈ (0,1), let
ρε(x) := ε−dρ(x/ε) be a mollifier and define bε

s := bs ∗ ρε , σε
s := σs ∗ ρε , where ∗ denotes the convolution. By the property

of mollifier, we have limε↓0
∫ t

0

∫
B R

(|bε
s (x) − bs(x)|p + ‖σε

s (x) − σs(x)‖p)dx ds = 0, p ∈ [1,∞), and by (5) and the property of
convolution, for almost all t and all x, y ∈ B R

2
〈
x − y,bε

t (x) − bε
t (y)

〉 + ∥∥σε
t (x) − σε

t (y)
∥∥2 �

(
f ε

R+1,t(x) + f ε
R+1,t(y)

) · |x − y|2.
Thus, by taking expectations for (9), we obtain
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E log

( |Zt∧τR |2
δ2

+ 1

)
� E

t∧τR∫
0

2〈Zs,bs(Y (1)
s ) − bs(Y (2)

s )〉 + ‖σs(Y (1)
s ) − σs(Y (2)

s )‖2

|Zs|2 + δ2
ds

� E

t∧τR∫
0

2〈Zs,bε
s (Y (1)

s ) − bε
s (Y (2)

s )〉 + ‖σε
s (Y (1)

s ) − σε
s (Y (2)

s )‖2

|Zs|2 + δ2
ds

+ 2

δ
E

t∧τR∫
0

(∣∣bε
s

(
Y (1)

s
) − bs

(
Y (1)

s
)∣∣ + ∣∣bε

s

(
Y (2)

s
) − bs

(
Y (2)

s
)∣∣) ds

+ 3

δ2
E

t∧τR∫
0

(∥∥σε
s

(
Y (1)

s
) − σs

(
Y (1)

s
)∥∥2 + ∥∥σε

s

(
Y (2)

s
) − σs

(
Y (2)

s
)∥∥2)

ds =: Iε1 + Iε2 + Iε3.

For Iε1, we have

Iε1 � E

t∧τR∫
0

(
f ε

R+1,s

(
Y (1)

s
) + f ε

R+1,s

(
Y (2)

s
))

ds � E

t∫
0

(
1|Y (1)

s |�R
· f ε

R+1,s

(
Y (1)

s
) + 1|Y (2)

s |�R
· f ε

R+1,s

(
Y (2)

s
))

ds

=
t∫

0

∫
B R

f ε
R+1,s(x)u(1)

s (x)dx ds +
t∫

0

∫
B R

f ε
R+1,s(x)u(2)

s (x)dx ds

�
∥∥ f ε

R+1

∥∥
Lq([0,1]×B R )

∥∥u(1)
∥∥

L p([0,1]×B R )
+ ∥∥ f ε

R+1

∥∥
Lq([0,1]×B R )

∥∥u(2)
∥∥

L p([0,1]×B R )
.

Similarly, we have Iε2 � C(
∫ t

0

∫
B R

|bε
s (x) − bs(x)|q dx ds)1/q and Iε3 � C(

∫ t
0

∫
B R

|σε
s (x) − σs(x)|q dx ds)1/q , where the constant C

depends on ‖u(i)‖Lp([0,1]×B R ) and δ, but is independent of ε.
Combining the above calculations and letting ε go to zero, we get

E log

( |Zt∧τR |2
δ2

+ 1

)
� ‖ f R+1‖Lq([0,1]×B R ) · (∥∥u(1)

∥∥
L p([0,1]×B R )

+ ∥∥u(2)
∥∥

L p([0,1]×B R )

)
.

Now, letting δ → 0, we obtain that for any R > 0 and t ∈ [0,1] Zt∧τR = 0, a.s. Since b and σ are bounded, from (8), it is

now standard to prove that E(supt∈[0,1] |Y (i)
t |) < +∞, i = 1,2. Hence, P {ω: limR→∞ τR(ω) = 1} = 1 and letting R → ∞ for

Zt∧τR = 0, we further have Zt = 0, a.s., ∀t ∈ [0,1]. So, P (1)
u0 = P (2)

u0 . Now, the uniqueness follows by (7). �
Proof of Theorem 1.3. Following the proof of Theorem 1.1, let Y (1)

t (resp. Y (2)
t ) be the weak solution corresponding to

ut(x)dx (resp. μt(dx)). By (6) and (9), we have

E log

( |Zt∧τR |2
δ2

+ 1

)
� E

t∧τR∫
0

f R,s
(
Y (1)

s
)

ds � ‖ f R‖Lq([0,1]×B R ) · ‖u‖L p([0,1]×B R ).

From this, as above we obtain the uniqueness. �
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