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The concept of very weak solution introduced by Giga (1981) for the stationary Stokes
equations has been intensively studied in the last years for the stationary Navier–Stokes
equations. We give here a new and simpler proof of the existence of very weak solution
for the stationary Navier–Stokes equations, based on density arguments and an adequate
functional framework in order to define more rigorously the traces of non-regular vector
fields. We also obtain regularity results in fractional Sobolev spaces. All these results are
obtained in the case of a bounded open set, connected of class C 1,1 of R

3 and can be
extended to the Laplace’s equation and to other dimensions.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le concept de solution très faible introduit par Giga (1981) pour les équations stationnaires
de Stokes a été beaucoup étudié ces dernières années pour les équations stationnaires
de Navier–Stokes. Nous donnons ici une nouvelle preuve plus simple de l’existence de
solution très faible pour les équations stationnaires de Navier–Stokes, qui s’appuie sur
des arguments de densité et un cadre fonctionnel approprié pour définir de manière plus
rigoureuse les traces des champs de vecteurs peu réguliers. On obtient aussi résultats de
régularité dans des espaces de Sobolev fractionnaires. Tous les résultats sont obtenus dans
le cas d’un ouvert connexe de classe C 1,1 de R

3 et peuvent être étendus à l’équation de
Laplace ainsi qu’aux autres dimensions.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L’objet de cette note consiste essentiellement à étudier l’existence de solutions très faibles (u,q) ∈ Lp(Ω) × W −1,p(Ω)

du problème de Stokes (S) (voir Definition 3.2). L’une des difficultés pour prouver l’existence de telles solutions consiste à
donner un sens à la condition aux limites de Dirichlet. Utilisant un argument d’interpolation, cela nous permet d’en déduire
l’existence de solutions appartenant à des espaces de Sobolev fractionnaires. Les principaux résultats d’existence sont donnés
dans la Section 3.
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1. Introduction

Let Ω be a bounded connected open set of R
3 of class C 1,1 with boundary Γ . We study the stationary Stokes prob-

lem (S):

−�u + ∇q = f and ∇ · u = h in Ω, u = g on Γ,

where u denotes the velocity field and q the pressure, and both are unknown. The external force f , the compressibility
condition h and the boundary condition for g are the data. The vector fields and matrix fields (and the corresponding
spaces) are respectively denoted by boldface Roman and special Roman.

The notion of very weak solutions (u,q) ∈ Lp(Ω) × W −1,p(Ω) for the stationary Stokes or Navier–Stokes equations,
corresponding to very irregular data, has been developed in the last years by Giga [9] (and also by Lions and Magenes [11]
for the Laplace’s equation, in a domain Ω of class C∞), Amrouche and Girault [1] (in a domain Ω of class C 1,1) and more
recently by Galdi, Simader and Sohr [8], Farwig, Galdi and Sohr [7] (in a domain Ω of class C 2,1, see also Schumacher [14])
and finally by Kim [10] (in a domain Ω of class C 2 with connected boundary). In this context, the boundary condition is
chosen in Lp(Γ ) (see Brown and Shen [3], Conca [5], Fabes, Kenig and Verchota [6], Moussaoui and Zine [12], Shen [15],
Savaré [13]) or more generally in W−1/p,p(Γ ).

The purpose of this work is to develop a unified theory of very weak solutions for the Dirichlet problem associated to the
stationary Stokes system. One important question is to define rigorously the traces of the vector functions which are living in
subspaces of Lp(Ω) (see Lemma 2.3). We prove existence and uniqueness of very weak solutions (u,q) ∈ Lp(Ω)× W −1,p(Ω)

for the Stokes problem for any 1 < p < ∞ (see Definition 3.2). Using an interpolation argument, we deduce the existence of
solutions belonging to fractional Sobolev spaces W s,p(Ω), with 0 � s � 2 (see Corollary 3.6 and Theorem 3.7). Observe that
the study of the Stokes problem is fundamental for the study of the Oseen and Navier–Stokes equations. The detailed proofs
of the results announced in this Note are given in [2].

2. Density and trace results

We introduce the spaces:

Dσ (Ω) = {
ϕ ∈ D(Ω); ∇ · ϕ = 0

}
, Dσ (Ω) = {

ψ ∈ D(Ω); ∇ · ψ = 0
}
,

Lp
σ (Ω) = {

v ∈ Lp(Ω); ∇ · v = 0
}
, Xr,p(Ω) = {

ϕ ∈ W1,r
0 (Ω); ∇ · ϕ ∈ W 1,p

0 (Ω)
}
, 1 < r, p < ∞,

and we set Xp,p(Ω) = Xp(Ω).

Lemma 2.1.

(i) The space Dσ (Ω) is dense in Lp
σ (Ω).

(ii) The space D(Ω) is dense in Xr,p(Ω) and for all q ∈ W −1,p(Ω) and ϕ ∈ Xr′,p′(Ω), we have

〈∇q,ϕ〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω) = −〈q,∇ · ϕ〉
W −1,p(Ω)×W 1,p′

0 (Ω)
. (1)

It is then easy to prove the following characterization:(
Xr,p(Ω)

)′ = {
f = ∇ · F0 + ∇ f1; F0 ∈ L

r′
(Ω), f1 ∈ W −1,p′

(Ω), with F0 = ( f i j)1�i, j�3
}
. (2)

As a consequence of Lemma 2.1(ii) and the Sobolev embeddings, we have the embeddings W−1,r(Ω) ↪→ (Xr′,p′ (Ω))′ ↪→
W−2,p(Ω), where the second embedding holds if 1

r � 1
p + 1

3 .
Giving a meaning to the trace of a very weak solution of a Stokes problem is not trivial. Remember that we are not in

the classical variational framework. In this way, we need to introduce some spaces. First, we consider the space Yp′ (Ω) =
{ψ ∈ W2,p′

(Ω); ψ |Γ = 0, (∇ · ψ)|Γ = 0} that can also be described (see [1]) as:

Yp′(Ω) =
{
ψ ∈ W2,p′

(Ω); ψ |Γ = 0,
∂ψ

∂n
· n

∣∣∣∣
Γ

= 0

}
. (3)

Note also that if ψ ∈ Yp′(Ω), then div ψ ∈ W 1,p′
0 (Ω) and the range space of the normal derivative γ1 : Yp′ (Ω) → W1/p,p′

(Γ )

is Zp′ (Γ ) = {z ∈ W1/p,p′
(Γ ); z · n = 0}. Secondly, we shall use the spaces:

Tp,r(Ω) = {
v ∈ Lp(Ω); �v ∈ (

Xr′,p′(Ω)
)′}

, Tp,r,σ (Ω) = {
v ∈ Tp,r(Ω); ∇ · v = 0

}
,

endowed with the norm ‖v‖Tp,r(Ω) = ‖v‖Lp(Ω) + ‖�v‖[Xr′,p′ (Ω)]′ . When p = r, these spaces are denoted as Tp(Ω) and
Tp,σ (Ω), respectively.

We also introduce the space Hp,r(div;Ω) = {v ∈ Lp(Ω); ∇ · v ∈ Lr(Ω)}, which is endowed with the graph norm. The
following lemma will help us to prove a trace result:
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Lemma 2.2.

(i) The space D(Ω) is dense in Tp,r(Ω) and in Tp,r(Ω) ∩ Hp,r(div;Ω) respectively.
(ii) The space Dσ (Ω) is dense in Tp,r,σ (Ω).

The following two lemmas prove that the tangential trace of functions v of Tp,r,σ (Ω) belongs to the dual space of Zp′ (Γ ),
which is (Zp′ (Γ ))′ = {μ ∈ W−1/p,p(Γ ); μ · n = 0}. Besides, we recall that we can decompose v into its tangential, vτ , and
normal parts, that is: v = vτ + (v · n)n.

Lemma 2.3. Let Ω be a bounded open set of R
3 of class C 1,1 . Let 1 < p < ∞ and r > 1 be such that 1

r � 1
p + 1

3 . The mapping

γτ : v �→ vτ |Γ on the space D(Ω) can be extended by continuity to a linear and continuous mapping, still denoted by γτ , from
Tp,r(Ω) into W−1/p,p(Γ ), and the following Green formula holds

〈�v,ψ〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω) =
∫
Ω

v · �ψ dx −
〈

vτ ,
∂ψ

∂n

〉
W−1/p,p(Γ )×W1/p,p′

(Γ )

, (4)

for any v ∈ Tp,r(Ω) and ψ ∈ Yp′ (Ω).

Proof. Consider v ∈ D(Ω) and ψ ∈ Yp′ (Ω). Then (4) holds. Observe that Yp′ (Ω) is included in Xr′,p′(Ω).
Suppose that μ ∈ W1/p,p′

(Γ ). Then, μ = μτ + (μ · n)n. Since Ω is of class C 1,1, we know that there exists ψ ∈ W2,p′
(Ω)

such that ψ = 0 and ∂ψ
∂n = μτ on Γ , and verifying:

‖ψ‖W2,p′
(Ω)

� C‖μτ ‖W1/p,p′
(Γ )

� C‖μ‖W1/p,p′
(Γ )

.

Moreover, ψ ∈ Yp′ (Ω). Therefore, we can estimate the boundary term as follows for such functions ψ :∣∣〈vτ ,μ〉W−1/p,p(Γ )×W1/p,p′
(Γ )

∣∣ � ‖v‖Lp(Ω)‖ψ‖W2,p′
(Ω)

+ ‖�v‖[Xr′,p′ ]′ ‖ψ‖Xr′,p′ .

Thus, ‖vτ ‖W−1/p,p(Γ ) � C‖v‖Tp,r(Ω). Therefore, the linear continuous mapping v �→ vτ |Γ defined on D(Ω) is continuous for

the norm of Tp,r(Ω). Since D(Ω) is dense in Tp,r(Ω), then we can extend this mapping from Tp,r(Ω) into W−1/p,p(Γ ),
that is, the tangential trace of functions of Tp,r(Ω) belongs to W−1/p,p(Γ ) and the relation (4) holds. �

We can also prove that D(Ω) is dense in Hp,r(div;Ω), the mapping γn : v �→ v · n|Γ is continuous from Hp,r(div;Ω)

into W −1/p,p(Γ ), and we have the Green formula: for any v ∈ Hp,r(div;Ω) and ϕ ∈ W 1,p′
(Ω),∫

Ω

v · ∇ϕ dx +
∫
Ω

ϕ div v dx = 〈v · n,ϕ〉W −1/p,p(Γ )×W 1/p,p′
(Γ )

.

3. Very weak solutions and regularity

We focus on the study of the stationary Stokes problem (S) with the compatibility condition:∫
Ω

h(x)dx = 〈g · n,1〉W −1/p,p(Γ )×W 1/p,p′
(Γ )

. (5)

Basic results on weak and strong solutions of problem (S) may be summarized in the following theorem (see [1,4]).

Theorem 3.1.

(i) For every f ∈ W−1,p(Ω), h ∈ L p(Ω), g ∈ W1−1/p,p(Γ ) satisfying the compatibility condition (5), the Stokes problem (S) has
exactly one solution u ∈ W1,p(Ω) and q ∈ L p(Ω)/R, and there exists a constant C > 0, depending only on p and Ω , such that:

‖u‖W1,p(Ω) + ‖q‖L p(Ω)/R � C
(‖ f ‖W−1,p(Ω) + ‖h‖L p(Ω) + ‖g‖W1−1/p,p(Γ )

)
. (6)

(ii) Moreover, if f ∈ Lp(Ω), h ∈ W 1,p(Ω), g ∈ W2−1/p,p(Γ ), then u ∈ W2,p(Ω), q ∈ W 1,p(Ω) satisfy an analogous estimate to (6)
with the corresponding norms.

We wonder about minimal necessary assumptions on f , h and g , in order that a very weak solution, that is, (u,q) ∈
Lp(Ω) × W −1,p(Ω)/R exists.
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We are interested here in the case of singular data satisfying the following assumptions:

f ∈ (
Xr′,p′(Ω)

)′
, h ∈ Lr(Ω), g ∈ W−1/p,p(Γ ), with

1

r
� 1

p
+ 1

3
and r � p. (7)

Observe that the space (Xr′,p′(Ω))′ is an intermediate space between W−1,r(Ω) and W−2,p(Ω).

Definition 3.2 (Very weak solution for the Stokes problem). A pair (u,q) ∈ Lp(Ω) × W −1,p(Ω) is a very weak solution of (S) if
the following equalities hold: For any ϕ ∈ Yp′ (Ω) and π ∈ W 1,p′

(Ω),

−
∫
Ω

u · �ϕ dx − 〈q,∇ · ϕ〉
W −1,p(Ω)×W 1,p′

0 (Ω)
= 〈 f ,ϕ〉Ω −

〈
gτ ,

∂ϕ

∂n

〉
Γ

,

∫
Ω

u · ∇π dx = −
∫
Ω

hπ dx + 〈g · n,π〉Γ , (8)

with 〈·,·〉Ω = 〈·,·〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω) and 〈·,·〉Γ = 〈·,·〉W−1/p,p(Γ )×W1/p,p′
(Γ )

.

Note that W 1,p′
(Ω) ↪→ Lr′

(Ω) and Yp′(Ω) ↪→ Xr′,p′(Ω) if 1
r � 1

p + 1
3 , which means that all the brackets and integrals

have a sense. We can then prove that, if f , h and g satisfy (7), then (u,q) ∈ Lp(Ω) × W −1,p(Ω) is a very weak solution
of (S) if and only if (u,q) satisfies the system (S) in the sense of distributions.

Proposition 3.1. Let f ∈ (Xp′ (Ω))′ , h ∈ L p(Ω) and g ∈ W−1/p,p(Γ ) satisfy the compatibility condition (5). Then, the Stokes prob-
lem (S) has exactly one solution u ∈ Tp(Ω) and q ∈ W −1,p(Ω)/R. Moreover, there exists a constant C > 0, depending only on p
and Ω , such that:

‖u‖Tp(Ω) + ‖q‖W −1,p(Ω)/R � C
(‖ f ‖[Xp′ (Ω)]′ + ‖h‖L p(Ω) + ‖g‖W−1/p,p(Γ )

)
. (9)

Proof. The case f = 0 and h = 0 is considered in [1]. Here, we generalize the result as follows:
Step 1. We suppose g · n = 0 on Γ and

∫
Ω

h(x)dx = 0. It remains to consider the equivalent problem: Find (u,q) ∈
Lp(Ω) × W −1,p(Ω)/R such that: for any w ∈ Yp′ (Ω) and any π ∈ W 1,p′

(Ω) it holds∫
Ω

u · (−�w + ∇π)dx − 〈q,∇ · w〉
W −1,p(Ω)×W 1,p′

0 (Ω)
= 〈 f , w〉[Xp′ (Ω)]′×Xp′ (Ω) −

〈
gτ ,

∂ w

∂n

〉
Γ

−
∫
Ω

hπ dx.

We can prove (as in [1]) that for any pair (F,ϕ) ∈ Lp′
(Ω) × (W 1,p′

0 (Ω) ∩ L p′
0 (Ω)):∣∣∣∣〈 f , w〉[Xp′ (Ω)]′×Xp′ (Ω) −

〈
gτ ,

∂ w

∂n

〉
Γ

−
∫
Ω

hπ dx

∣∣∣∣
� C

(‖ f ‖[Xp′ (Ω)]′ + ‖g‖W−1/p,p(Ω) + ‖h‖L p(Ω)

)(‖F‖Lp′
(Ω)

+ ‖ϕ‖W 1,p′
(Ω)

)
,

being (w,π) ∈ Yp′ (Ω) × W 1,p′
(Ω)/R the unique solution of the Stokes (dual) problem:

−�w + ∇π = F and ∇ · w = ϕ in Ω, w = 0 on Γ.

Note that for any k ∈ R, | ∫
Ω

hπ dx| = | ∫
Ω

h(π + k)dx| � ‖h‖Lp(Ω)‖π‖Lp′
(Ω)/R

and ‖w‖W2,p′
(Ω)

+ ‖π‖W 1,p′
(Ω)/R

�
C (‖F‖Lp′

(Ω)
+ ‖ϕ‖W 1,p′

(Ω)
). From this bound, we deduce that the mapping (F,ϕ) → 〈 f , w〉Ω − 〈gτ , ∂ w

∂n 〉Γ − ∫
Ω

hπ dx

defines an element of the dual space of Lp′
(Ω) × (W 1,p′

0 (Ω) ∩ L p′
0 (Ω)) with norm bounded by C(‖ f ‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) +

‖g‖W−1/p,p(Ω)). That means that there exists a unique (u,q) ∈ Lp(Ω) × W −1,p(Ω)/R solution of (S) satisfying the esti-
mate (9).

Step 2. Now, we suppose that
∫
Ω

h(x)dx = 〈g · n,1〉Γ . Define u0 = ∇θ with θ ∈ W 1,p(Ω) the solution of the Neumann
problem: �θ = h in Ω and ∂θ

∂n = g · n on Γ. By Step 1, there exists a unique (z,q) ∈ Lp(Ω) × W −1,p(Ω)/R satisfying:
−�z +∇q = f +∇h and ∇ · z = 0 in Ω and z = g − u0|Γ on Γ , where ∇h ∈ (Xp′ (Ω))′ and g − u0|Γ satisfies the hypothesis
of Step 1. Thus, the pair of functions (u,q) = (z + u0,q) is the required solution. �

The following result is a generalization of Proposition 4.11 in [1], where f = 0 and h = 0.
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Theorem 3.3. Let f , h, g be given satisfying (5) and (7). Then, the Stokes problem (S) has exactly one solution (u,q) ∈ Tp,r(Ω) ×
W −1,p(Ω)/R. Moreover, there exists a constant C > 0, only depending on p and Ω , such that:

‖u‖Tp,r(Ω) + ‖q‖W −1,p(Ω)/R � C
(‖ f ‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ )

)
. (10)

Remark 1. (i) Observe that in [8] Theorem 3, the domain was of class C 2,1 (here it is of class C 1,1), and the divergence term
was h ∈ L p(Ω) (here of h ∈ Lr(Ω)). Moreover, our solution is obtained in the space Tp,r(Ω), which has been clearly char-
acterized, contrary to the space Ŵ1,p(Ω) appearing in [8], which was not characterized, completely abstract and obtained
as the closure of W1,p(Ω) for the norm ‖u‖Ŵ1,p(Ω) = ‖u‖Lp(Ω) + ‖A−1/2

r Pr�u‖Lr(Ω), where Ar is the Stokes operator with

domain equal to W2,p(Ω) ∩ W1,p
0 (Ω) ∩ Lp

σ (Ω) and Pr is the Helmholtz projection operator from Lr(Ω) onto Lr
σ (Ω).

(ii) Existence of very weak solution u ∈ Lp(Ω) was proved by Kim [10] for f ∈ [W1,q′
0 (Ω) ∩ W 2,q′

(Ω)]′ , for h ∈
[W 1,q′

(Ω)]′ and g ∈ W−1/q,q(Γ ), but the spaces chosen for h and f are not correct either and the equivalence in The-
orem 5 of [10] is not valid.

Corollary 3.4. Let f , h, g be given satisfying (5) and f = ∇ · F0 + ∇ f1 with F0 ∈ L
r(Ω), f1 ∈ W −1,p(Ω), h ∈ Lr(Ω), g ∈

W1−1/r,r(Γ ). Then the solution u given by Theorem 3.3 belongs to W1,r(Ω). If moreover f1 ∈ Lr(Ω), then q belongs to Lr(Ω). In
both cases, we have analogous estimates to (10).

Remark 2. It is clear that W1,r(Ω) ↪→ Tp,r(Ω) when 1
r � 1

p + 1
3 , i.e., Tp,r(Ω) is an intermediate space between W1,r(Ω)

and Lp(Ω).

Corollary 3.5. Let h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ ) be given, satisfying (5), with 1
r � 1

p + 1
3 and r � p. Then, there exists at least

one solution u ∈ Tp,r(Ω) verifying ∇ · u = h in Ω and u = g on Γ . Moreover, there exists a constant C = C(Ω, p, r) such that
‖u‖Tp,r(Ω) � C(‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ )).

The following corollary gives Stokes solutions (u,q) in fractionary Sobolev spaces of type Wσ ,p(Ω) × W σ−1,p(Ω), with
0 < σ < 2.

Corollary 3.6. Let s be a real number such that 0 � s � 1.

(i) Let f = ∇ ·F0 +∇ f1 , h and g satisfy the compatibility condition (5) with F0 ∈ Ws,r(Ω), f1 ∈ W s−1,p(Ω), g ∈ Ws−1/p,p(Γ ) and
h ∈ W s,r(Ω), with 1

r � 1
p + 1

3 and r � p. Then, the Stokes problem (S) has exactly one solution (u,q) ∈ Ws,p(Ω)×W s−1,p(Ω)/R

satisfying the estimate

‖u‖Ws,p(Ω) + ‖q‖W s−1,p(Ω)/R � C
(‖F0‖Ws,r(Ω) + ‖ f1‖W s−1,p(Ω) + ‖h‖W s,r(Ω) + ‖g‖Ws−1/p,p(Γ )

)
.

(ii) Assume that f ∈ Ws−1,p(Ω), g ∈ Ws+1−1/p,p(Γ ) and h ∈ W s,p(Ω), fulfill the compatibility condition (5). Then, the Stokes
problem (S) has exactly one solution (u,q) ∈ Ws+1,p(Ω) × W s,p(Ω)/R with

‖u‖Ws+1,p(Ω) + ‖q‖W s,p(Ω)/R � C
(‖ f ‖Ws−1,p(Ω) + ‖h‖W s,p(Ω) + ‖g‖Ws+1−1/p,p(Γ )

)
.

The following theorem provides solutions for external forces f ∈ Ws−2,p(Ω) and divergence condition h ∈ W s−1,p(Ω)

with 1/p < s < 2. In particular, if p = 2, we obtain solutions in H1/2+ε(Ω) × H1/2+ε(Ω), for any 0 < ε � 3/2.

Theorem 3.7. Let s be a real number such that 1
p < s � 2. Let f , h and g satisfy the compatibility condition (5) with f ∈ Ws−2,p(Ω),

h ∈ W s−1,p(Ω) and g ∈ Ws−1/p,p(Γ ). Then, the Stokes problem (S) has exactly one solution (u,q) ∈ Ws,p(Ω) × W s−1,p(Ω)/R

satisfying the estimate

‖u‖Ws,p(Ω) + ‖q‖W s−1,p(Ω)/R � C
(‖ f ‖Ws−2,p(Ω) + ‖h‖W s−1,p(Ω) + ‖g‖Ws−1/p,p(Γ )

)
. (11)

References

[1] C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44 (119)
(1994) 109–140.

[2] C. Amrouche, M.A. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier–Stokes equations with singular data, submitted for publication.
[3] R.M. Brown, Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J. 44 (4) (1995) 1183–1206.
[4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazoni di Stokes, Rend. Sem. Univ. Padova 31 (1961) 308–340.
[5] C. Conca, Stokes equations with non-smooth data, Rev. Math. Appl. 10 (1989) 115–122.
[6] E.B. Fabes, C.E. Kenig, G.C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57 (3) (1988) 769–793.
[7] R. Farwig, G.P. Galdi, Very weak solutions and large uniqueness classes of stationary Navier–Stokes equations in bounded domain of R

2, J. Differential
Equations 227 (2006) 564–580.



228 C. Amrouche, M.Á. Rodríguez-Bellido / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 223–228
[8] G.P. Galdi, C.G. Simader, H. Sohr, A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in W −1/q,q , Math. Ann. 331
(2005) 41–74.

[9] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lp -spaces, Math. Z. 178 (1981) 287–329.
[10] H. Kim, Existence and regularity of very weak solutions of the stationary Navier–Stokes equations, Arch. Ration. Mech. Anal. 193 (2009) 117–152.
[11] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968.
[12] M. Moussaoui, A.M. Zine, Existence and regularity results for the Stokes system with non-smooth boundary data in a polygon, Math. Models Methods

Appl. Sci. 8 (8) (1998) 1307–1315.
[13] G. Savaré, Regularity results for elliptic equations in Lipschitz domains, J. Funct. Anal. 152 (1) (1998) 176–201.
[14] K. Schumacher, Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces, Ann. Univ. Ferrara Sez. VII Sci.

Mat. 54 (1) (2008) 123–144.
[15] Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. AMS 123 (3) (1995) 801–811.


	Very weak solutions for the stationary Stokes equations
	Version française abrégée
	Introduction
	Density and trace results
	Very weak solutions and regularity
	References


