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RESUME

Le but de cette Note est de construire un nouveau type de série de Stirling, étendant la
formule de Gosper pour les grandes factorielles. Nous établissons de nouvelles inégalités
précises pour les fonctions gamma et digamma. Enfin, nous indiquons des calculs
numériques qui démontre la supériorité de notre nouvelle série sur la série classique de
Stirling.
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Probably one from the most known approximation formula for the factorial function is the Stirling formula:
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that is the first estimate of the Stirling series, e.g., [1, p. 257],
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In this Note we discuss the following more accurate formula:

n!%m. <g> (Gosper [4]),

proving the following double inequality for x > 1,
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where the constant w =e,/ % =1.0039940821... is the best possible. Furthermore, we prove new sharp bounds for the
digamma function ¢, e.g. [1, p. 258]. For x > 1, it holds
1

1 1 1
Inx— —4+ —— —¢<y¥®x) <lnx— — +

, 3
X 2(x+g) X2+ ¢) ¥

with the best possible constant { =y — ‘7‘ =0.0057864... (y =0.577215... is the Euler-Mascheroni constant), improving
other known results [2,5-7,14] as

1 1
Inx— —<¢y® <lnx— —, x>1.
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Instead of completing the approximation series at the end part of the formula, as in the classical Stirling’s series, we
continue the series under the square root, the first two terms being given by the Gosper’s formula. In this way, we obtain a
series converging unexpectedly faster than the well-known Stirling series, namely
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which can be viewed as an extension of the Stirling and Gosper formulas.

2. The results

In the first part of this section, we prove the following:
Theorem 1. The function f : [1, c0) — R given by
1 1
f=InIr'x+1) —xIlnx+x—In+v2m — 3 1n<x+ 6)

is convex, and strictly decreasing.

Proof. We have
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According to a result of Gordon [3, Theorem 4], for every x > 0, we have
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As for every x > 1,
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it results that f”(x) > 0, for every x > 1. Now, f’ is strictly increasing with limy_, o f'(x) =0, thus f’ <0 and f is strictly
decreasing. O

As a direct consequence of the fact that f is strictly decreasing, we have 0 =limy_, o f(x) < f(x) < f(1)=1+1In,/ %
for every x > 1, which is the sharp inequality (2).

Using the fact that f’ is strictly increasing, we have ‘7‘ —y=f'(1) < f/(x) < limy_ o f'(x) =0, for every x > 1, which is
the sharp inequality (3).

Now we are interested in finding the real values a, b, ¢, d that provide the most accurate formula of the form
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To this end, we introduce the sequence (i;);>1 by the relations
n\" 1 a b ¢ d
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and we say that an approximation (5) is better, the faster (Ap)n>1 converges to zero. A basic tool for measuring the rate of
convergence is the following:
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Lemma. If (An)n>1 is convergent to zero and there exists the limit
lim n*Oy — A1) =1 €R, (6)
n—-oo

with k > 1, then there exists the limit: lim;_, oo 1" 1A, = ﬁ

This lemma was used by Mortici [8-13] for constructing asymptotic expansions, or accelerating some convergences. For
proof, see, e.g., [11].

We can see from the lemma that the speed of convergence of the sequence (Ap)n>1 is even higher as the value k
satisfying (6) is greater.

As we are interested to compute a limit of the form (6), we write A, — Apy1 from (5) as a power series of n™1,
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The fastest sequence (A;)n>1 is obtained when the first four coefficients of this power series vanish. In this case
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we have
Y 324179 40 1
n A1 = 39191040007 n®
and by the lemma, the sequence (i,)n>1, representing the expression of the error term, converges with asymptotically
relative error 22479 .
Finally, we demonstrate the superiority of our new series
wa far(ned s ! 31 139 9871 n\" o
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over the classical Stirling series truncated at the n=# term (see Table 1):
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Table 1
Numerical results.
n on —n! n!'— un
50 2.9137 x 10> 2.4477 x 100
100 1.2919 x 1014 1.2301 x 1014
500 3.9298 x 10'118 1.0671 x 101114
2500 8.9183 x 107392 8.6741 x 107386

In fact, the Stirling series (8) remains weaker than our formula (7), even if we omit from (7) the term containing n—*.
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