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Let Fn be the free group on n generators, and let PΣn be the group of automorphisms of
Fn that send each generator to a conjugate of itself. The kernel Kn of the homomorphism
PΣn → PΣn−1, induced by mapping one of the free group generators to the identity, is
finitely generated. We show that Kn has cohomological dimension n−1, and that Hi(Kn;Z)

is not finitely generated for 2 � i � n − 1. It follows that Kn is not finitely presentable for
n � 3.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Fn le groupe libre engendré par n éléments, et soit PΣn le groupe des automorphismes
de Fn qui envoient chaque générateur sur un conjugué. Le noyau Kn de l’homomorphisme
PΣn → PΣn−1, obtenu en envoyant un des générateurs du groupe libre sur l’identité, est de
type fini. On démontre que Kn est de dimension cohomologique n − 1, est que Hi(Kn;Z)

n’est pas de type fini pour 2 � i � n − 1. Par conséquent Kn n’est pas de présentation finie
pour n � 3.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a recent work, Brendle and Hatcher [2] proved that the space of all smooth links in R
3 isotopic to the trivial link of

n components has the homotopy type of the finite-dimensional subspace of configurations of n unlinked circles, and thus
their fundamental groups are isomorphic. The fundamental group of the latter space is a 3-dimensional analogue of the
classical braid group (the space of configurations of n points in R

2), and Goldsmith [6] showed that it is isomorphic to the
symmetric automorphism group, the group of automorphisms of Fn which send every generator to a conjugate of another
generator or its inverse.

The subgroup consisting of those automorphisms which send every generator to a conjugate of itself (or, in mapping
class group terms, those classes which send every oriented circle in R

3 back to itself) is known as the pure symmetric
automorphism group, denoted by PΣn . McCool [9] gave a finite presentation for PΣn , and Brownstein and Lee [3] computed
its cohomology when n = 3. Collins [4] proved that PΣn has cohomological dimension n − 1; it also follows from his
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work that PΣn is F P∞ . Later, Brady, McCammond, Meier and Miller [1] showed that PΣn is a duality group, and Jensen,
McCammond and Meier [7] determined completely the structure of the cohomology ring of PΣn for n � 3.

Let P Bn denote the pure braid group, the elements of the braid group that send each puncture back to itself. It is well
known that for all n there is a homomorphism π : P Bn → P Bn−1 induced by “filling in” a puncture. In fact, there is the
following split exact sequence:

1 Fn−1 P Bn
π P Bn−1 1 (1)

In particular, the pure braid group may be regarded as an iteration of semi-direct products of free groups. The pure braid
group P Bn is isomorphic to a subgroup of PΣn , and by “filling in” the nth circle we obtain a split exact sequence compatible
with (1):

1 Kn PΣn
π PΣn−1 1 (2)

For n = 2 the kernel K2 is equal to PΣ2. For n � 2, the group Kn is finitely generated (compare with Lemma 2.1 below),
and hence H1(Kn;Z) is finitely generated. The main purpose of this Note is to study the higher homology groups of Kn for
n � 3:

Theorem 1.1. The group Kn has cohomological dimension n − 1. For n � 3 its i-th homology group Hi(Kn;Z) is not finitely generated
for 2 � i � n − 1.

Collins and Gilbert proved that K3 is not finitely presentable in [5]. Theorem 1.1 yields an independent proof of this fact,
generalizing to all n � 3:

Corollary 1.1. Kn is not finitely presentable for n � 3.

As pointed out by Brendle and Hatcher [2], the corollary suggests that these kernels Kn are unlikely to have nice inter-
pretations in terms of configuration spaces of circles.

2. Finitely generated homology groups

In this section we verify the finite generation of Kn and compute its first homology group, H1(Kn;Z), and its cohomo-
logical dimension.

Lemma 2.1. The group Kn is finitely generated, and its first homology group H1(Kn;Z) � Z
2n−2 .

Proof. McCool [9] proved that the group PΣn is generated by

αi j(xr) =
{

xr, r �= i

x jxi x
−1
j , r = i

with relators [αi j,αkl], [αik,α jk], [αi j,αikα jk]

for distinct i, j,k, and l. It is clear that Kn is normally generated by {αin,αni | 1 � i � n−1}. In fact by examining the McCool
relators, these elements are seen to generate Kn:

α±1
i j αniα

∓1
i j = α∓1

nj αniα
±1
nj , α±1

jk αniα
∓1
jk = αni, α±1

ji αniα
∓1
ji = αni

α±1
i j αinα

∓1
i j = α∓1

nj αinα
±1
nj , α±1

jk αinα
∓1
jk = αin

α−1
ji αinα ji = α−1

ji α−1
jn α jiαinα jn = αniα

−1
jn α−1

ni αinα jn

α jiαinα
−1
ji = α jnαinα jiα

−1
jn α−1

ji = α jnαinα
−1
ni α−1

jn αni

The last two expressions are each derived from a conjugate of a McCool relator, followed by a substitution using a second
relator.

Consider the free group F ({αin,αni}) of rank 2n − 2 on the generators of Kn , a subgroup of the free group F ({αi j}) of
rank n2 − n on the generators of PΣn . It is clear from McCool’s presentation that the kernel of the map F ({αi j}) → PΣn is
contained in the commutator subgroup. An element in the kernel of F ({αin,αni}) → Kn lies in[

F
({αi j}

)
, F

({αi j}
)] ∩ F

({αin,αni}
)

and such an element must also lie in the commutator subgroup of F ({αin,αni}). This shows that H1(Kn;Z) �
H1(F ({αin,αni});Z), completing the proof of Lemma 2.1. �
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Jensen and Wahl [8] describe an (n − 1)-dimensional contractible simplicial complex Xn on which PΣn acts freely with
compact quotient. Briefly, this complex Xn is the geometric realization of the poset of symmetric based graphs with fun-
damental group Fn , and a marking from a basis {x1, . . . , xn} to each graph Γ which induces an isomorphism Fn → π1(Γ ).
A symmetric graph is one in which every edge belongs to a unique cycle, and the partial ordering is given by the collapsing
of edges. The complex Xn embeds into the spine of Autre space, the based-graph version of Culler–Vogtmann’s Outer space.
We refer the reader to [8] for details.

Lemma 2.2. Kn has cohomological dimension n − 1.

Proof. The existence of Xn gives an upper bound of n − 1 for the cohomological dimension of Kn . The elements
{α1n, . . . ,αn−1,n} generate a free abelian subgroup of rank n − 1, so that n − 1 is also a lower bound. This completes
the proof of the lemma, and thereby the first part of Theorem 1.1. �
3. Non-finitely generated homology groups

We begin with a short lemma about Hn−1(Kn;Z):

Lemma 3.1. The group Hn−1(Kn;Z) has a nontrivial element.

Proof. The subgroup Kn contains the n − 1 commuting elements α1n, . . . ,αn−1,n . From the McCool relations, we can verify
that we have homomorphisms

Z
n−1 Kn Z

n−1

whose composition is the identity. Therefore the induced map Hn−1(Z
n−1;Z) → Hn−1(Kn;Z) is injective. �

We next prove a proposition which, together with Lemma 3.1, proves the theorem. The author is thankful to A. Hatcher
for suggesting this proposition as a very nice simplification of arguments in an earlier version of this Note:

Proposition 3.1. Let Γ be a group acting freely and simplicially on a contractible (n − 1)-dimensional complex X, and let K be normal
subgroup of Γ of infinite index. Then if Hn−1(K ;Z) is nonzero, it is not finitely generated.

Proof. By assumption, K acts freely on the contractible complex X , so Y = X/K is an Eilenberg–MacLane space of type
K (K ,1). Thus by the assumption that Hn−1(K ;Z) �= 0, we have Hn−1(Y ;Z) �= 0. A nontrivial (n−1)-cycle of Y is represented
by a finite sum of (n − 1)-simplices, so there exists a nontrivial finite subcomplex A of Y such that Hn−1(A;Z) �= 0. As Γ/K
acts freely on Y , and as K has infinite index in Γ , there is an infinite set of pairwise disjoint translates of A by Γ/K ;
denote the union of such a set of translates by U . Clearly Hn−1(U ;Z) is not finitely generated. The proof is complete by the
following exact sequence on the relative pair (Y , U ):

· · · Hn(Y , U ;Z) Hn−1(U ;Z) Hn−1(Y ;Z) Hn−1(Y , U ;Z) · · ·
The first term Hn(Y , U ;Z) = 0 as Y has dimension n − 1. �

For n � 3, the subgroup Kn has infinite index in PΣn , and so Lemma 3.1 and Proposition 3.1 applied to the Jensen–Wahl
complex Xn imply that Hn−1(Kn;Z) is not finitely generated. Now observe that there is a split surjective homomorphism
Kn → Kn−1. This induces a split surjection Hi(Kn;Z) → Hi(Kn−1;Z) for all i. Theorem 1.1 then holds for n � 3 by induction
on n.
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