

#### Contents lists available at ScienceDirect

# C. R. Acad. Sci. Paris, Ser. I



www.sciencedirect.com

### **Complex Analysis**

# Oka maps

## Les applications d'Oka

## Franc Forstnerič

Faculty of Mathematics and Physics, University of Ljubljana, and Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

#### ARTICLE INFO

Article history: Received 11 November 2009 Accepted 7 December 2009 Available online 30 December 2009

Presented by Mikhaël Gromov

#### ABSTRACT

We prove that for a holomorphic submersion of reduced complex spaces, the basic Oka property implies the parametric Oka property. It follows that a stratified subelliptic submersion, or a stratified fiber bundle whose fibers are Oka manifolds, enjoys the parametric Oka property.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### RÉSUMÉ

Nous prouvons que, pour une submersion holomorphe des espaces complexes réduits, la propriété d'Oka simple implique la propriété d'Oka paramétrique. En particulier, toute submersion sous-elliptique stratifié possède la propriété d'Oka paramétrique.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### 1. Oka properties of holomorphic maps

Let *E* and *B* be reduced complex spaces. A holomorphic map  $\pi : E \to B$  is said to enjoy the *Basic Oka Property* (BOP) if, given a holomorphic map  $f : X \to B$  from a reduced Stein space *X* and a continuous map  $F_0 : X \to E$  satisfying  $\pi \circ F_0 = f$  (a *lifting* of *f*) such that  $F_0$  is holomorphic on a closed complex subvariety *X'* of *X* and in a neighborhood of a compact  $\mathcal{O}(X)$ -convex subset *K* of *X*, there is a homotopy of liftings  $F_t : X \to E$  ( $t \in [0, 1]$ ) of *f* to a holomorphic lifting  $F_1$  such that for every  $t \in [0, 1]$ ,  $F_t$  is holomorphic in a neighborhood of *K* (independent of *t*),  $\sup_{x \in K} \text{dist}(F_t(x), F_0(x)) < \epsilon$ , and  $F_t|_{X'} = F_0|_{X'}$  (the homotopy is fixed on *X'*).

By definition, a complex manifold Y enjoys BOP if and only if the trivial map  $Y \rightarrow point$  does. This is equivalent to several other properties, from the simplest *Convex Approximation Property* (CAP) to the *Parametric Oka Property* (POP) concerning compact families of maps from reduced Stein spaces to Y [2]. A complex manifold enjoying these equivalent properties is called an *Oka manifold* [2,11]; these are precisely the *fibrant complex manifolds* in Lárusson's model category [9]. Here we prove that BOP  $\Rightarrow$  POP also holds for holomorphic submersions. (The submersion condition corresponds to requiring smoothness as part of the definition of a variety being Oka. The singular case is rather problematic.)

**Theorem 1.1.** For every holomorphic submersion  $\pi : E \to B$  of reduced complex spaces, the basic Oka property implies the parametric Oka property.

Recall [9] that a holomorphic map  $\pi: E \to B$  enjoys the *Parametric Oka Property* (POP) if for any triple (X, X', K) as above and for any pair  $P_0 \subset P$  of compact subsets in an Euclidean space  $\mathbb{R}^m$  the following holds. Given a continuous

E-mail address: franc.forstneric@fmf.uni-lj.si.

<sup>1631-073</sup>X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.12.004

map  $f: P \times X \to B$  that is *X*-holomorphic (that is,  $f(p, \cdot): X \to B$  is holomorphic for every  $p \in P$ ) and a continuous map  $F_0: P \times X \to E$  such that (a)  $\pi \circ F_0 = f$ , (b)  $F_0(p, \cdot)$  is holomorphic on *X* for all  $p \in P_0$  and is holomorphic on  $K \cup X'$  for all  $p \in P$ , there exists for every  $\epsilon > 0$  a homotopy of continuous liftings  $F_t: P \times X \to E$  of *f* to an *X*-holomorphic lifting  $F_1$  such that the following hold for all  $t \in [0, 1]$ :

(i)  $F_t = F_0$  on  $(P_0 \times X) \cup (P \times X')$ , and

(ii)  $F_t$  is X-holomorphic on K and  $\sup_{p \in P, x \in K} \operatorname{dist}(F_t(p, x), F_0(p, x)) < \epsilon$ .

A stratified subelliptic holomorphic submersion, or a stratified fiber bundle with Oka fibers, enjoys BOP [3,4]. Hence Theorem 1.1 implies:

#### Corollary 1.2.

- (i) Every stratified subelliptic submersion enjoys POP.
- (ii) Every stratified holomorphic fiber bundle with Oka fibers enjoys POP.

If  $\pi: E \to B$  enjoys the Oka property then by considering liftings of constant maps  $X \to b \in B$  we see that every fiber  $E_b = \pi^{-1}(b)$  is an Oka manifold. For stratified fiber bundles the converse holds by Corollary 1.2.

Question: Does every holomorphic submersion with Oka fibers enjoys the Oka property?

A holomorphic map is said to be an *Oka map* if it is a topological (Serre) fibration and it enjoys POP. Such maps are *intermediate fibrations* in Lárusson's model category [9,10]. Corollary 1.2 implies:

#### Corollary 1.3.

- (i) Every holomorphic fiber bundle projection with Oka fiber is an Oka map.
- (ii) A stratified subelliptic submersion, or a stratified holomorphic fiber bundle with Oka fibers, is an Oka map if and only if it is a Serre fibration.

Corollary 1.2(i) and the proof by Ivarsson and Kutzschebauch [8] give the following solution of the parametric Gromov–Vaserstein problem [7,12].

**Theorem 1.4.** Assume that X is a finite-dimensional reduced Stein space, P is a compact subset of  $\mathbb{R}^m$ , and  $f: P \times X \to SL_n(\mathbb{C})$  is a null-homotopic X-holomorphic mapping. Then there exist a natural number N and X-holomorphic mappings  $G_1, \ldots, G_N: P \times X \to \mathbb{C}^{n(n-1)/2}$  such that

$$f(p,x) = \begin{pmatrix} 1 & 0 \\ G_1(p,x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(p,x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_N(p,x) \\ 0 & 1 \end{pmatrix}$$

is a product of upper and lower diagonal unipotent matrices.

#### 2. Reduction of Theorem 1.1 to an approximation property

Assume that  $\pi: E \to B$  enjoys BOP and that  $(X, X', K, P, P_0, f, F_0)$  are as in the definition of POP, with  $P_0 \subset P \subset \mathbb{R}^m \subset \mathbb{C}^m$ . Set

$$Z = \mathbb{C}^m \times X \times E, \qquad Z_0 = \mathbb{C}^m \times X \times B, \qquad \psi = (\mathrm{id}_{\mathbb{C}^m \times X}) \times \pi : Z \to Z_0. \tag{1}$$

Observe that  $\psi$  enjoys BOP (resp. POP) if and only if  $\pi$  does. To the map  $f: P \times X \to B$  we associate the X-holomorphic section

$$g: P \times X \to Z_0, \qquad g(p, x) = (p, x, f(p, x)) \quad (p \in P, x \in X),$$

$$(2)$$

and to the  $\pi$ -lifting  $F_0: P \times X \to E$  of f we associate the section

$$G_0: P \times X \to Z, \qquad G_0(p, x) = (p, x, F_0(p, x)) \quad (p \in P, x \in X).$$

$$(3)$$

Then  $\psi \circ G_0 = g$ ,  $G_0$  is X-holomorphic over  $K \cup X'$ , and  $G_0|_{P_0 \times X}$  is X-holomorphic. We must find a homotopy  $G_t : P \times X \to Z$ ( $t \in [0, 1]$ ) such that  $\psi \circ G_t = g$  for all  $t \in [0, 1]$ ,  $G_1$  is X-holomorphic, and for all  $t \in [0, 1]$  the map  $G_t$  has the same properties as  $G_0$ ,  $G_t$  is uniformly close to  $G_0$  on  $K \times P$ , and  $G_t = G_0$  on  $(P_0 \times X) \cup (P \times X')$ . Set

$$Q = [0, 1] \times P,$$
  $Q_0 = (\{0\} \times P) \cup ([0, 1] \times P_0).$ 

The following result is the key to the proof of Theorem 1.1.

**Proposition 2.1.** If the submersion  $\psi : Z \to Z_0$  (1) enjoys the basic Oka property, then it also enjoys the following Parametric Homotopy Approximation Property (PHAP): Let  $K \subset L$  be compact  $\mathcal{O}(X)$ -convex subsets and let  $U \supset K$ ,  $V \supset L$  be open neighborhoods in X. Assume that  $g : P \times V \to Z_0$  is an X-holomorphic section of the form (2) and  $G_t : P \times V \to Z$  ( $t \in [0, 1]$ ) is a homotopy of sections (3) satisfying

(a)  $\psi \circ G_t = g$  for  $t \in [0, 1]$ ,

(b)  $G_t(p, \cdot)$  is holomorphic on U for  $(t, p) \in Q$ , and

(c)  $G_t(p, \cdot) = G_0(p, \cdot)$  for  $(t, p) \in Q_0$ , and these are holomorphic on V.

Let  $\epsilon > 0$ . After shrinking the neighborhoods  $U \supset K$  and  $V \supset L$ , there exists a homotopy  $\widetilde{G}_t : P \times V \rightarrow Z$  ( $t \in [0, 1]$ ) of the form (3) such that

(i)  $\psi \circ \widetilde{G}_t = g$  for all  $t \in [0, 1]$ , (ii) for each  $(t, p) \in Q$  the map  $\widetilde{G}_t(p, \cdot) : V \to Z$  is holomorphic and it satisfies  $\sup_{x \in K} \text{dist}(\widetilde{G}_t(p, x), G_t(p, x)) < \epsilon$ , and

(iii)  $\widetilde{G}_t(p, \cdot) = G_t(p, \cdot)$  for each  $(t, p) \in Q_0$ .

Furthermore, there is a homotopy from  $\{G_t\}$  to  $\{\widetilde{G}_t\}$  consisting of homotopies with the same properties as  $\{G_t\}$ .

For families of sections of a holomorphic submersion  $\pi : Z \to X$  over a Stein space *X*, PHAP holds if  $Z \to X$  admits a fiber-dominating spray over a neighborhood of *L* [7,5], or a finite fiber-dominating family of sprays [1]. Submersions admitting such sprays over small open subsets of *X* are called *elliptic*, resp. *subelliptic*. If PHAP holds over small open subsets of *X* then sections  $X \to Z$  satisfy the parametric Oka property (Gromov [7, Theorem 4.5]; the details can be found in [3,5]). The same proof applies in our situation (see [4, Theorem 4.2]) and shows that PHAP implies Theorem 1.1.

#### 3. Proof of Proposition 2.1

Let  $h: \mathcal{E} \to Z$  denote the holomorphic vector bundle whose fiber over a point  $z \in Z$  equals the tangent space at z to the (smooth) fiber of  $\psi$ . The restriction  $\mathcal{E}|_{\Omega}$  to any open Stein domain  $\Omega \subset Z$  is a reduced Stein space. By standard techniques we obtain for every such  $\Omega$  an open Stein neighborhood  $W \subset \mathcal{E}|_{\Omega}$  of the zero section  $\Omega \subset \mathcal{E}|_{\Omega}$ , with W Runge in  $\mathcal{E}|_{\Omega}$ , and a continuous map  $s: \mathcal{E}|_{\Omega} \to Z$  satisfying  $\psi \circ s = \psi \circ h$ , such that s is the identity on the zero section, it is holomorphic on W, and it maps the fiber  $W_z = \mathcal{E}_z \cap W$  over a point  $z \in Z$  biholomorphically onto a neighborhood of the point  $z = s(0_z)$  in the fiber  $Z_{\psi(z)} = \psi^{-1}(\psi(x))$ . Such s is a fiber-dominating spray in the sense of [7], except that it is not globally holomorphic.

By [6, Corollary 2.2] each of the sets

$$S_0 = G_0(P \times L) \subset Z, \qquad \Sigma_t = G_t(P \times K) \subset Z \quad (t \in [0, 1])$$

is a Stein compactum in Z. By compactness of  $\bigcup_{t \in [0,1]} \Sigma_t$  there exist numbers  $0 = t_0 < t_1 < \cdots < t_N = 1$ , Stein domains  $\Omega_0, \ldots, \Omega_{N-1} \subset Z$  satisfying

$$\bigcup_{t \in [t_j, t_{j+1}]} \Sigma_t \subset \Omega_j \quad (j = 0, 1, \dots, N-1),$$

$$\tag{4}$$

and for every j = 0, 1, ..., N - 1 there exist an open Stein neighborhood  $W_j \subset \mathcal{E}|_{\Omega_j}$  of the zero section  $\Omega_j$  of  $\mathcal{E}|_{\Omega_j}$  such that  $W_j$  is Runge in  $\mathcal{E}|_{\Omega_j}$  and has convex fibers, a fiber-spray  $s_j : \mathcal{E}|_{\Omega_j} \to Z$  as above that is holomorphic on  $W_j$ , and a homotopy  $\xi_t$  ( $t \in [t_j, t_{j+1}]$ ) of X-holomorphic sections of the restricted bundle  $\mathcal{E}|_{G_{t_j}(P \times U)}$ , with the range contained in  $W_j$ , such that

(i)  $\xi_{t_i}$  is the zero section of  $\mathcal{E}|_{G_{t_i}(P \times U)}$ ,

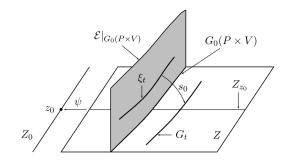
(ii)  $\xi_t(p, \cdot)$  is the zero section when  $p \in P_0$  and  $t \in [t_i, t_{i+1}]$ , and

(iii)  $s_j \circ \xi_t \circ G_{t_i} = G_t$  on  $P \times U$  for all  $t \in [t_j, t_{j+1}]$ .

(See Fig. 1.) For a given collection  $(\Omega_j, W_j, s_j)$  the existence of homotopies  $\xi_t$  is stable under sufficiently small perturbations of the homotopy  $G_t$ .

Consider the homotopy of sections  $\{\xi_t\}_{t \in [0,t_1]}$  of  $\mathcal{E}|_{G_0(P \times U)}$ . By the parametric version of the Oka–Weil theorem we can approximate  $\xi_t$  uniformly on  $P \times K$  by X-holomorphic sections  $\xi_t$  of  $\mathcal{E}|_{G_0(P \times V')}$  for an open set  $V' \subset X$  with  $L \subset V' \subset V$ . Further, we may choose  $\xi_t = \xi_t$  for t = 0 and on  $P_0 \times V'$ . In the sequel the set V' may shrink around L.

By [6, Corollary 2.2] there is an open Stein neighborhood  $\Omega$  of  $S_0$  in Z such that  $S_0$  is  $\mathcal{O}(\Omega)$ -convex. Hence  $\Sigma_0 = G_0(P \times K) \subset S_0$  is also  $\mathcal{O}(\Omega)$ -convex, and it follows that  $W_0 \cap \mathcal{E}|_{\Sigma_0}$  is exhausted by  $\mathcal{O}(\mathcal{E}|_{\Omega})$ -convex compact sets. Since  $\mathcal{E}|_{\Omega}$  is a reduced Stein space and  $s_0$  extends continuously to  $\mathcal{E}|_{\Omega}$  preserving the property  $\psi \circ s_0 = \psi \circ h$ , the assumed BOP of  $\psi$  implies that  $s_0$  can be approximated on the range of the homotopy { $\xi_t: t \in [0, t_1]$ } (which is contained in  $W_0 \cap \mathcal{E}|_{\Sigma_0}$ ) by a holomorphic map  $\tilde{s}_0: \mathcal{E}|_{\Omega} \to Z$  which equals the identity on the zero section and satisfies  $\psi \circ \tilde{s}_0 = \psi \circ h$ . The homotopy



**Fig. 1.** Lifting sections  $G_t$  to the spray bundle  $\mathcal{E}|_{G_0(P \times V)}$ .

 $\widetilde{G}_t = \widetilde{s}_0 \circ \widetilde{\xi}_t \circ G_0 : P \times V' \to Z \quad (t \in [0, t_1])$ 

is fixed over  $P_0$ , *X*-holomorphic on V',  $\tilde{G}_0 = G_0$ , and  $\tilde{G}_t$  approximates  $G_t$  uniformly on  $P \times K$  (also uniformly with respect to  $t \in [0, t_1]$ ). If the approximation is sufficiently close, we obtain a new homotopy  $\{G_t\}_{t \in [0,1]}$  that agrees with  $\tilde{G}_t$  for  $t \in [0, t_1]$  (hence is *X*-holomorphic on *L*), and that agrees with the initial homotopy for  $t \in [t'_1, 1]$  for some  $t'_1 > t_1$  close to  $t_1$ .

We now repeat the same argument with the parameter interval  $[t_1, t_2]$  using  $G_{t_1}$  as the initial reference map. This produces a new homotopy that is X-holomorphic on L for all values  $t \in [0, t_2]$ . After N steps of this kind we obtain a homotopy satisfying the conclusion of Proposition 2.1.

#### Acknowledgements

I wish to thank Finnur Lárusson for his helpful remarks on a preliminary version of the paper. Research was supported in part by grants P1-0291 and J1-2043-0101 from ARRS, Republic of Slovenia.

#### References

- [1] F. Forstnerič, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002) 527-551.
- [2] F. Forstnerič, Oka manifolds, C. R. Acad. Sci. Paris Ser. I 347 (2009) 1017-1020.
- [3] F. Forstnerič, The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q. 6 (3) (2010) 843-874.
- [4] F. Forstnerič, Invariance of the parametric Oka property, in: P. Ebenfelt, N. Hungerbuehler, J.J. Kohn, N. Mok, E.J. Straube (Eds.), Complex Analysis, in: Trends Math., Birkhäuser, 2010.
- [5] F. Forstnerič, J. Prezelj, Oka's principle for holomorphic submersions with sprays, Math. Ann. 322 (2002) 633-666.
- [6] F. Forstnerič, E.F. Wold, Fibrations and Stein neighborhoods, Proc. Amer. Math. Soc., in press, arXiv:0906.2424.
- [7] M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989) 851-897.
- [8] B. Ivarsson, F. Kutzschebauch, A solution of Gromov's Vaserstein problem, C. R. Acad. Sci. Paris Ser. I 346 (2008) 1239-1243.
- [9] F. Lárusson, Model structures and the Oka principle, J. Pure Appl. Algebra 192 (2004) 203-223.
- [10] F. Lárusson, Mapping cylinders and the Oka principle, Indiana Univ. Math. J. 54 (2005) 1145-1159.
- [11] F. Lárusson, What is an Oka manifold? Notices Amer. Math. Soc. 57 (1) (2010) 50-52, http://www.ams.org/notices/201001/.
- [12] L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc. 103 (1988) 741-746.