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We prove that for a holomorphic submersion of reduced complex spaces, the basic
Oka property implies the parametric Oka property. It follows that a stratified subelliptic
submersion, or a stratified fiber bundle whose fibers are Oka manifolds, enjoys the
parametric Oka property.
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r é s u m é

Nous prouvons que, pour une submersion holomorphe des espaces complexes réduits,
la propriété d’Oka simple implique la propriété d’Oka paramétrique. En particulier, toute
submersion sous-elliptique stratifié possède la propriété d’Oka paramétrique.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Oka properties of holomorphic maps

Let E and B be reduced complex spaces. A holomorphic map π : E → B is said to enjoy the Basic Oka Property (BOP) if,
given a holomorphic map f : X → B from a reduced Stein space X and a continuous map F0 : X → E satisfying π ◦ F0 = f
(a lifting of f ) such that F0 is holomorphic on a closed complex subvariety X ′ of X and in a neighborhood of a compact
O(X)-convex subset K of X , there is a homotopy of liftings Ft : X → E (t ∈ [0,1]) of f to a holomorphic lifting F1 such
that for every t ∈ [0,1], Ft is holomorphic in a neighborhood of K (independent of t), supx∈K dist(Ft(x), F0(x)) < ε , and
Ft |X ′ = F0|X ′ (the homotopy is fixed on X ′).

By definition, a complex manifold Y enjoys BOP if and only if the trivial map Y → point does. This is equivalent to several
other properties, from the simplest Convex Approximation Property (CAP) to the Parametric Oka Property (POP) concerning
compact families of maps from reduced Stein spaces to Y [2]. A complex manifold enjoying these equivalent properties
is called an Oka manifold [2,11]; these are precisely the fibrant complex manifolds in Lárusson’s model category [9]. Here
we prove that BOP ⇒ POP also holds for holomorphic submersions. (The submersion condition corresponds to requiring
smoothness as part of the definition of a variety being Oka. The singular case is rather problematic.)

Theorem 1.1. For every holomorphic submersion π : E → B of reduced complex spaces, the basic Oka property implies the parametric
Oka property.

Recall [9] that a holomorphic map π : E → B enjoys the Parametric Oka Property (POP) if for any triple (X, X ′, K ) as
above and for any pair P0 ⊂ P of compact subsets in an Euclidean space R

m the following holds. Given a continuous
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map f : P × X → B that is X-holomorphic (that is, f (p, ·) : X → B is holomorphic for every p ∈ P ) and a continuous map
F0 : P × X → E such that (a) π ◦ F0 = f , (b) F0(p, ·) is holomorphic on X for all p ∈ P0 and is holomorphic on K ∪ X ′ for
all p ∈ P , there exists for every ε > 0 a homotopy of continuous liftings Ft : P × X → E of f to an X-holomorphic lifting F1
such that the following hold for all t ∈ [0,1]:

(i) Ft = F0 on (P0 × X) ∪ (P × X ′), and
(ii) Ft is X-holomorphic on K and supp∈P , x∈K dist(Ft(p, x), F0(p, x)) < ε.

A stratified subelliptic holomorphic submersion, or a stratified fiber bundle with Oka fibers, enjoys BOP [3,4]. Hence
Theorem 1.1 implies:

Corollary 1.2.

(i) Every stratified subelliptic submersion enjoys POP.
(ii) Every stratified holomorphic fiber bundle with Oka fibers enjoys POP.

If π : E → B enjoys the Oka property then by considering liftings of constant maps X → b ∈ B we see that every fiber
Eb = π−1(b) is an Oka manifold. For stratified fiber bundles the converse holds by Corollary 1.2.

Question: Does every holomorphic submersion with Oka fibers enjoys the Oka property?

A holomorphic map is said to be an Oka map if it is a topological (Serre) fibration and it enjoys POP. Such maps are
intermediate fibrations in Lárusson’s model category [9,10]. Corollary 1.2 implies:

Corollary 1.3.

(i) Every holomorphic fiber bundle projection with Oka fiber is an Oka map.
(ii) A stratified subelliptic submersion, or a stratified holomorphic fiber bundle with Oka fibers, is an Oka map if and only if it is a Serre

fibration.

Corollary 1.2(i) and the proof by Ivarsson and Kutzschebauch [8] give the following solution of the parametric Gromov–
Vaserstein problem [7,12].

Theorem 1.4. Assume that X is a finite-dimensional reduced Stein space, P is a compact subset of R
m, and f : P × X → SLn(C) is a

null-homotopic X-holomorphic mapping. Then there exist a natural number N and X-holomorphic mappings G1, . . . , G N : P × X →
C

n(n−1)/2 such that

f (p, x) =
(

1 0
G1(p, x) 1

)(
1 G2(p, x)
0 1

)
· · ·

(
1 G N(p, x)
0 1

)
is a product of upper and lower diagonal unipotent matrices.

2. Reduction of Theorem 1.1 to an approximation property

Assume that π : E → B enjoys BOP and that (X, X ′, K , P , P0, f , F0) are as in the definition of POP, with P0 ⊂ P ⊂
R

m ⊂ C
m . Set

Z = C
m × X × E, Z0 = C

m × X × B, ψ = (idCm×X ) × π : Z → Z0. (1)

Observe that ψ enjoys BOP (resp. POP) if and only if π does. To the map f : P × X → B we associate the X-holomorphic
section

g : P × X → Z0, g(p, x) = (
p, x, f (p, x)

)
(p ∈ P , x ∈ X), (2)

and to the π -lifting F0 : P × X → E of f we associate the section

G0 : P × X → Z , G0(p, x) = (
p, x, F0(p, x)

)
(p ∈ P , x ∈ X). (3)

Then ψ ◦G0 = g , G0 is X-holomorphic over K ∪ X ′ , and G0|P0×X is X-holomorphic. We must find a homotopy Gt : P × X → Z
(t ∈ [0,1]) such that ψ ◦ Gt = g for all t ∈ [0,1], G1 is X-holomorphic, and for all t ∈ [0,1] the map Gt has the same
properties as G0, Gt is uniformly close to G0 on K × P , and Gt = G0 on (P0 × X) ∪ (P × X ′). Set

Q = [0,1] × P , Q 0 = ({0} × P
) ∪ ([0,1] × P0

)
.

The following result is the key to the proof of Theorem 1.1.
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Proposition 2.1. If the submersion ψ : Z → Z0 (1) enjoys the basic Oka property, then it also enjoys the following Parametric Homo-
topy Approximation Property (PHAP): Let K ⊂ L be compact O(X)-convex subsets and let U ⊃ K , V ⊃ L be open neighborhoods in X.
Assume that g : P × V → Z0 is an X-holomorphic section of the form (2) and Gt : P × V → Z (t ∈ [0,1]) is a homotopy of sections
(3) satisfying

(a) ψ ◦ Gt = g for t ∈ [0,1],
(b) Gt(p, ·) is holomorphic on U for (t, p) ∈ Q , and
(c) Gt(p, ·) = G0(p, ·) for (t, p) ∈ Q 0 , and these are holomorphic on V .

Let ε > 0. After shrinking the neighborhoods U ⊃ K and V ⊃ L, there exists a homotopy G̃t : P × V → Z (t ∈ [0,1]) of the form (3)
such that

(i) ψ ◦ G̃t = g for all t ∈ [0,1],
(ii) for each (t, p) ∈ Q the map G̃t(p, ·) : V → Z is holomorphic and it satisfies supx∈K dist(G̃t(p, x), Gt(p, x)) < ε , and

(iii) G̃t(p, ·) = Gt(p, ·) for each (t, p) ∈ Q 0 .

Furthermore, there is a homotopy from {Gt} to {G̃t} consisting of homotopies with the same properties as {Gt}.

For families of sections of a holomorphic submersion π : Z → X over a Stein space X , PHAP holds if Z → X admits
a fiber-dominating spray over a neighborhood of L [7,5], or a finite fiber-dominating family of sprays [1]. Submersions
admitting such sprays over small open subsets of X are called elliptic, resp. subelliptic. If PHAP holds over small open
subsets of X then sections X → Z satisfy the parametric Oka property (Gromov [7, Theorem 4.5]; the details can be found
in [3,5]). The same proof applies in our situation (see [4, Theorem 4.2]) and shows that PHAP implies Theorem 1.1.

3. Proof of Proposition 2.1

Let h : E → Z denote the holomorphic vector bundle whose fiber over a point z ∈ Z equals the tangent space at z to the
(smooth) fiber of ψ . The restriction E |Ω to any open Stein domain Ω ⊂ Z is a reduced Stein space. By standard techniques
we obtain for every such Ω an open Stein neighborhood W ⊂ E |Ω of the zero section Ω ⊂ E |Ω , with W Runge in E |Ω , and
a continuous map s : E |Ω → Z satisfying ψ ◦ s = ψ ◦h, such that s is the identity on the zero section, it is holomorphic on W ,
and it maps the fiber W z = Ez ∩ W over a point z ∈ Z biholomorphically onto a neighborhood of the point z = s(0z) in the
fiber Zψ(z) = ψ−1(ψ(x)). Such s is a fiber-dominating spray in the sense of [7], except that it is not globally holomorphic.

By [6, Corollary 2.2] each of the sets

S0 = G0(P × L) ⊂ Z , Σt = Gt(P × K ) ⊂ Z
(
t ∈ [0,1])

is a Stein compactum in Z . By compactness of
⋃

t∈[0,1] Σt there exist numbers 0 = t0 < t1 < · · · < tN = 1, Stein domains
Ω0, . . . ,ΩN−1 ⊂ Z satisfying⋃

t∈[t j ,t j+1]
Σt ⊂ Ω j ( j = 0,1, . . . , N − 1), (4)

and for every j = 0,1, . . . , N − 1 there exist an open Stein neighborhood W j ⊂ E |Ω j of the zero section Ω j of E |Ω j such
that W j is Runge in E |Ω j and has convex fibers, a fiber-spray s j : E |Ω j → Z as above that is holomorphic on W j , and a
homotopy ξt (t ∈ [t j, t j+1]) of X-holomorphic sections of the restricted bundle E |Gt j (P×U ) , with the range contained in W j ,

such that

(i) ξt j is the zero section of E |Gt j (P×U ) ,

(ii) ξt(p, ·) is the zero section when p ∈ P0 and t ∈ [t j, t j+1], and
(iii) s j ◦ ξt ◦ Gt j = Gt on P × U for all t ∈ [t j, t j+1].

(See Fig. 1.) For a given collection (Ω j, W j, s j) the existence of homotopies ξt is stable under sufficiently small perturbations
of the homotopy Gt .

Consider the homotopy of sections {ξt}t∈[0,t1] of E |G0(P×U ) . By the parametric version of the Oka–Weil theorem we can
approximate ξt uniformly on P × K by X-holomorphic sections ξ̃t of E |G0(P×V ′) for an open set V ′ ⊂ X with L ⊂ V ′ ⊂ V .
Further, we may choose ξ̃t = ξt for t = 0 and on P0 × V ′ . In the sequel the set V ′ may shrink around L.

By [6, Corollary 2.2] there is an open Stein neighborhood Ω of S0 in Z such that S0 is O(Ω)-convex. Hence Σ0 =
G0(P × K ) ⊂ S0 is also O(Ω)-convex, and it follows that W0 ∩ E |Σ0 is exhausted by O(E |Ω)-convex compact sets. Since

E |Ω is a reduced Stein space and s0 extends continuously to E |Ω preserving the property ψ ◦ s0 = ψ ◦ h, the assumed BOP
of ψ implies that s0 can be approximated on the range of the homotopy {ξt : t ∈ [0, t1]} (which is contained in W0 ∩ E |Σ0 )
by a holomorphic map s̃0 : E |Ω → Z which equals the identity on the zero section and satisfies ψ ◦ s̃0 = ψ ◦h. The homotopy
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Fig. 1. Lifting sections Gt to the spray bundle E |G0(P×V ) .

G̃t = s̃0 ◦ ξ̃t ◦ G0 : P × V ′ → Z
(
t ∈ [0, t1]

)
is fixed over P0, X-holomorphic on V ′ , G̃0 = G0, and G̃t approximates Gt uniformly on P × K (also uniformly with respect to
t ∈ [0, t1]). If the approximation is sufficiently close, we obtain a new homotopy {Gt}t∈[0,1] that agrees with G̃t for t ∈ [0, t1]
(hence is X-holomorphic on L), and that agrees with the initial homotopy for t ∈ [t′

1,1] for some t′
1 > t1 close to t1.

We now repeat the same argument with the parameter interval [t1, t2] using Gt1 as the initial reference map. This
produces a new homotopy that is X-holomorphic on L for all values t ∈ [0, t2]. After N steps of this kind we obtain a
homotopy satisfying the conclusion of Proposition 2.1.
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[2] F. Forstnerič, Oka manifolds, C. R. Acad. Sci. Paris Ser. I 347 (2009) 1017–1020.
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