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In this work we wish to investigate an example based on the so-called Kesten–Spitzer
random walk in random scenery. Namely, replacing the one-dimensional random walk
in a general i.i.d. scenery by the hybrids of empirical and partial sums process (see, for
instance, [L. Horváth, Approximations for hybrids of empirical and partial sums process,
J. Statist. Plann. Inference 88 (2000) 1–18]), we establish an upper bound in the strong
approximation for the corresponding functional.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans ce travail nous établissons une borne supérieure dans l’approximation forte d’une
fonctionnelle basée sur la marche aléatoire de Kesten–Sptizer en environnement aléatoire,
lorsque la marche aléatoire symétrique est remplacée par un processus hybride empirique
et des sommes partielles.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let {σi}i∈Z be a sequence of independent and identically distributed (i.i.d.) real-valued random variables such that

E[σ0] = 0, E
[
σ 2

0

] = 1 and E
[|σ0|p]

< ∞, for all p > 0. (1)

Any realisation of the sequence {σi}i∈Z is called a scenery and let S = {Sk}k∈N be a simple symmetric random walk in Z
starting at S0 = 0. The process K = {Kn}n∈N, defined by Kn = ∑

0�k�n σ(Sk), n ∈ N is usually referred to as the Kesten–
Spitzer random walk in random scenery (RWRS). Some relevant works related to RWRS are for instance (see also references
therein), [9] where a continuous analogue for K was introduced and analyzed, [5] where Csáki et al. working on an em-
bedding for the Kesten–Spitzer random walk in random scenery stating also a strong approximation for Kn by a functional
corresponding to Brownian motion in Brownian scenery and [3] where Chen and Khoshnevisan prove that model of charged
polymers and a model of type Kn are very close to one another.

The aim of this Note is to establish an upper bound in the strong approximation for the functional Kn when Sk is
replaced by the process {Mn(t), 0 � t � 1}n�1 defined by

Mn(t) = [
Tn(t)

] =
[ ∑

1�i�n

εi V (Yi)1{Yi�t}
]
, (2)
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[x] denoting the greatest integer satisfying x − 1 < [x] � x, {Yi, 1 � i < ∞} are i.i.d. random variables with common
distribution uniform on [0,1], {εi, 1 � i < ∞} are i.i.d. random variables with common distribution uniform given by
P (ε1 = 1) = P (ε1 = −1) = 1/2 independent of the Y ’s, V is a function satisfying supt∈[0,1] |V (t)| � 1, and {σi}i∈Z denote a
sequence of i.i.d. real-valued random variables satisfying conditions given in (1). In this case we will be concerned with the
approximation of the functional given by

Kn(t) =
n∑

l=0

σ
(
Ml(t)

) =
∑
x∈Z

σ(x)Lx
t (Mn), (3)

by a functional corresponding to Brownian motion in Brownian scenery (BMRS) (see gn(t), Section 2). The second equality
in (3) gives us that Kn can be represented compactly (see for instance [3,5]) where Lx

t (Mn) is the local time of the process
Mn which we will define in (5).

Our main result and the proof will be given in Section 2. Without loss of generality, we will assume that all the random
variables and the stochastic processes introduced throughout are defined on the same probability space.

Let us now recall some facts related to the processes that are in studying. The process Tn given in (2) can be obtained
from the process T̃n defined by T̃n(t) = ∑

1�i�n εi H(Xi)1{Xi�t} , −∞ < t < ∞ where the sequence {Xi,1 � i < ∞} are i.i.d.
random variables with common distribution function F , independent of the sequence {εi,1 � i < ∞} and the function H is
positive and has bounded variation on the real line. By [8, p. 5], we have without loss of generality, there are i.i.d. random
variables {Yi, 1 � i < ∞} uniform on [0,1] such that Xi = Q (Yi), with Q (y) = inf{x : F (x) � y}, i.e., the quantile function
of F , then we can consider Tn(t) in the place of T̃n(t).

Let B be a standard Wiener process. The jointly continuous version of the local time of B , is usually defined by the
occupation time formula: for all Borel non-negative function f ,

t∫
0

f
(

B(s)
)

ds =
∫
R

f (x)Lx
t (B)dx, t > 0. (4)

The local time of the process Mn = {[∑n
i=1 εi V (Yi)1{Yi�t}], t ∈ [0,1]}, is given by

Lx
t (Mn) = 1√

n

∑
s�t

1{Mn(s)=x}, t ∈ [0,1], x ∈ Z. (5)

Remark that the local time of Mn denoted by Lx
t (Mn) corresponds to

∫ x+1
x L y

t (Tn)dy (i.e. the occupation time of [x, x+1) for

the process Tn). Now, in the same spirit of [1], denoting Un(t) = ∑[nt]
i=1 εi for 0 � t � 1 and Nn(t) = ∑

1�i�n V (Yi)1{Yi�t}/n
for 0 � t � 1, we define the local time of the process Tn by

Lx
t (Tn) =

1∫
0

Ls
t (Nn)ds Lx

s(Un) (x ∈ Z).

2. Results and proofs

Here and subsequently, we consider a sequence of independent Brownian motions W1n and an independent Brownian
motion W2, where W1n(t) = W1(nGn(t)) with Gn(t) = ∫ t

0 V 2(s)dEn(s) and En(t) is the empirical (uniform) distribution
function based on the first n terms of the sequence of random variables Yi ’s. We consider also the associated functional
called the Brownian motion in Brownian scenery defined by gn(t) = ∫

R Lx
t (W1n)dW2(x) where Lx

t (W1n) is the local time of
the process W1n . Let X be a process we define Lx

1(X) = sup0�t�1 Lx
t (X).

In our first result we establish an upper bound for the approximation of the local time of the process Mn by the local
time of W1n given by Lx

1(W1n) = ∫ 1
0 Ls

1(Gn)ds Lx
s (Wn), this local was defined on [1] in the light of the strong approximation

given by Diebolt in [7].

Theorem 2.1. Under conditions related to the definition of the process Mn. Then we can define a sequence of Wiener processes
{W1n(t), 0 � t � 1} such that

sup
x∈Z

∣∣Lx
1(Mn) − Lx

1(W1n)
∣∣ = o

(
n1/4+η

)
, a.s.

Our next theorem is the main result:

Theorem 2.2. Under conditions given in (1) and under conditions of Theorem 2.1, we get
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∣∣∣∣
∑
x∈Z

Lx
1(Mn)σx −

∫
R

Lx
1(W1n)dW2(x)

∣∣∣∣ = o
(
n5/8+ε

)
, a.s.

where W2 is a Wiener processes independent of W1n and defined in the same probability space.

Proof of Theorem 2.1. The first part of our proof starts with an overview of the arguments given in [1] useful for to state
some properties of the local time of the process Tn . Let {Hn(t)}t�0 be a compensated compound Poisson process. We have
that {αn(t); t � 0} ≡ {Hn(t); t � 0 | Hn(1) = 0}, where αn(t) is the uniform empirical process and Hn(t) = H(nt)/

√
n with

{H(nt)}n�1 is a sequence of compensated Poisson process with expected arrival rate of 1/n. By using crossing comparison
(see p. 339 of [10]) we obtain that

√
nHn(s) = H(ns), then we can consider that Lx

t (Nn) = Lx′
t (Hn) for x ∈ R and x′ =

x − n
∫ t

0 V 2(s)ds. In the same way as in the proof of Proposition 1 of [1], we get

sup
x,y∈R: |x−y|�bn

∣∣Lx
1(Tn) − Lx

1(W1n)
∣∣ = O

(
n1/4+δ′)

, a.s. (6)

for some δ′ > 0 and bn = O (n−1/2) (see Lemma 3.1 in [2] and Fact 7.2 in [6, p. 1052]). In the second part of the proof, we
state the upper bound in the approximation of the local time of Mn denoted by Lx

t (Mn). Remember that Lx
t (Mn) corresponds

to
∫ x+1

x L y
t (Tn)dy. Then we have

sup
x∈Z

∣∣Lx
1(Mn) − Lx

1

([W1n]
)∣∣ � I1 + I2 + I3,

where

I1 = sup
x∈Z

∣∣∣∣∣
x+1∫
x

(
L y

1 (Tn) − Lx
1(Tn)

)
dy

∣∣∣∣∣, I2 = sup
x∈Z

∣∣Lx
1(Tn) − Lx

1(W1n)
∣∣ and

I3 = sup
x∈Z

∣∣∣∣∣
x+1∫
x

(
L y

1 (W1n) − Lx
1

([W1n]
))

dy

∣∣∣∣∣.

By using (6) we have that I2 = O (n1/4+δ′
), a.s. By using (2.19) of [4], we have I3 = O (n1/4+η1 ), a.s.

Finally, replacing Tn by W1n in |L y
1 (Tn) − Lx

1(Tn)| and by making use of (2.19) of [4] and (6), we get that I1 = O (n1/4+η).
It is easily seen that the announced rate is obtained from those of I1, I2 and I3. The proof of Theorem 2.1 is complete. �
Remark 1. By using the law of the iterated logarithm (LIL) for W1n , we have that Lx

t (W1n) = 0, a.s. for x >
√

2n log2 n and
in the same way, we have that Lx

t (Tn) = 0, a.s. for x >
√

2n log2 n.

Proof of Theorem 2.2. The proof will be based on two propositions giving some useful results.

Proposition 2.3. Under the same conditions of Theorem 2.2, we get

In =
∣∣∣∣
∑
x∈Z

σx
(
Lx

1(Mn) − Lx
1(W1n)

)∣∣∣∣ = O
(
n1/2+η

)
, a.s.

Proof. By using (6) we get In = |∑x∈Z σx|O (n1/4+δ′
), a.s. By using the LIL for |∑N

x=−N σx| = O (
√

N log2 N ). Now, by using

Remark 1 we have that N = [√n log2 n ] then |∑N
x=−N σx| = O (n1/4+η2). It is now a direct consequence of the above results

the announced upper bound.

The following proposition is given without proof, because is in the same vein of Proposition 2.2 of [5]:

Proposition 2.4. Under the same conditions as in Theorem 2.2, we have
∣∣∣∣
∑
x∈Z

σxLx
1(W1n) −

∫
R

Lx
1(W1n)dW2(x)

∣∣∣∣ = o
(
n5/8+ε

)
, a.s.

The proof of Theorem 2.2 is a direct consequence of Propositions 2.1 and 2.2.
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