A counterexample to the local-global principle of linear dependence for Abelian varieties

Un contre-exemple au principe de la dépendance linéaire des variétés abéliennes

Peter Jossen ${ }^{\text {a }}$, Antonella Perucca ${ }^{\text {b }}$
${ }^{\text {a }}$ NWF I - Mathematik, Universität Regensburg, 93040 Regensburg, Germany
${ }^{\text {b }}$ Section des mathématiques, École polytechnique fédérale de Lausanne, EPFL station 8, Ch-1015 Lausanne, Switzerland

A R T I C L E I N F O

Article history:

Received 4 July 2009
Accepted after revision 23 November 2009
Available online 23 December 2009
Presented by Jean-Pierre Serre

Abstract

Let A be an Abelian variety defined over a number field k. Let P be a point in $A(k)$ and let X be a subgroup of $A(k)$. Gajda and Kowalski asked in 2002 whether it is true that the point P belongs to X if and only if the point $(P \bmod \mathfrak{p})$ belongs to $(X \bmod \mathfrak{p})$ for all but finitely many primes \mathfrak{p} of k. We provide a counterexample. © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Soient k un corps de nombres, A une variété abélienne sur k, P un point de $A(k)$ et X un sous-groupe de $A(k)$. En 2002 Gajda et Kowalski ont demandé s'il est vrai que le point P appartient à X si et seulement si le point $(P \bmod \mathfrak{p})$ appartient à $(X \bmod \mathfrak{p})$ pour presque toute place finie \mathfrak{p} de k. Nous donnons une réponse négative à cette question. © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let A be an Abelian variety defined over a number field k. Let P be a point in $A(k)$ and let X be a subgroup of $A(k)$. Suppose that for all but finitely many primes \mathfrak{p} of k the point $(P \bmod \mathfrak{p})$ belongs to $(X \bmod \mathfrak{p})$. Is it true that P belongs to X ? This question, which was formulated by Gajda and by Kowalski in 2002, was named the problem of detecting linear dependence. The problem was addressed in several papers [1-4,6,9-13] but the question was still open. In a recent note, [7], the first author stated that the answer to this problem is always affirmative, but this is wrong. In this note we present a counterexample.

A counterexample to the analogous statement for tori was given by Schinzel in [12]. We have recently been informed that Banaszak and Krasoń found different counterexamples, which will appear in a new version of [3]. In his Ph.D. thesis, [8], the first author shows that for simple Abelian varieties the answer is positive.

Let k be a number field and let E be an elliptic curve over k such that there are points P_{1}, P_{2}, P_{3} in $E(k)$ which are \mathbb{Z}-linearly independent. Define $A:=E^{3}$, and let $P \in A(k)$ and $X \subseteq A(k)$ be the following:

$$
P:=\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right) \quad X:=\{M P \in A(k) \mid M \in \operatorname{Mat}(3, \mathbb{Z}), \operatorname{tr} M=0\}
$$

[^0]So the group X consists of the images of the point P via the subgroup of the endomorphisms of A consisting of the matrices with integer coefficients and trace zero. Since the points P_{i} are \mathbb{Z}-independent, the point P does not belong to X. Notice that no non-zero multiple of P belongs to X.

Claim. Let \mathfrak{p} be a prime of k where E has good reduction. The image of P under the reduction map modulo \mathfrak{p} belongs to the image of X.
For the rest of this note, we fix a prime \mathfrak{p} of good reduction for E. We write κ for the residue field of k at \mathfrak{p}. To ease notation, we now let E denote the reduction of the given elliptic curve modulo \mathfrak{p} and write P_{1}, P_{2}, P_{3}, P for the image of the given points under the reduction map modulo \mathfrak{p}.

Our aim is to find an integer matrix M of trace zero such that $P=M P$ in $A(\kappa)$.
For $i=1,2,3$ call J_{i} the subgroup of the integers defined as follows: n belongs to J_{i} if and only if $n P_{i}$ is in the subgroup of $E(\kappa)$ generated by the other two points. Call α_{i} the positive generator of J_{i}. There are integers $m_{i j}$ such that

$$
\begin{aligned}
& \alpha_{1} P_{1}+m_{12} P_{2}+m_{13} P_{3}=0 \\
& m_{21} P_{1}+\alpha_{2} P_{2}+m_{23} P_{3}=0 \\
& m_{31} P_{1}+m_{32} P_{2}+\alpha_{3} P_{3}=0
\end{aligned}
$$

Assume that the greatest common divisor of α_{1}, α_{2} and α_{3} is 1 (we prove this assumption later). We can thus find integers a_{1}, a_{2}, a_{3} such that

$$
3=\alpha_{1} a_{1}+\alpha_{2} a_{2}+\alpha_{3} a_{3}
$$

Write $m_{i i}:=1-\alpha_{i} a_{i}$, so that in particular $m_{11}+m_{22}+m_{33}=0$. Then we have

$$
\left(\begin{array}{ccc}
m_{11} & -a_{1} m_{12} & -a_{1} m_{13} \\
-a_{2} m_{21} & m_{22} & -a_{2} m_{23} \\
-a_{3} m_{31} & -a_{3} m_{32} & m_{33}
\end{array}\right)\left(\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)
$$

Notice that the above matrix has integer entries and trace zero. Hence we are left to prove that the greatest common divisor of α_{1}, α_{2} and α_{3} is indeed 1 , or in other words that the ideals J_{1}, J_{2} and J_{3} generate \mathbb{Z}.

Fix a prime number ℓ and let us show that ℓ does not divide $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Suppose on the contrary that ℓ divides $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. By definition of the ideals J_{i}, this is equivalent to saying that ℓ divides all the coefficients appearing in any linear relation between P_{1}, P_{2} and P_{3}. In particular, this implies that ℓ divides the order of P_{1}, P_{2} and P_{3} in $E(\kappa)$.

Let Z denote the subgroup of $E(\kappa)$ generated by P_{1}, P_{2} and P_{3}. It is well known that the group $E(\kappa)[\ell]$ is either trivial, isomorphic to $\mathbb{Z} / \ell \mathbb{Z}$ or isomorphic to $(\mathbb{Z} / \ell \mathbb{Z})^{2}$. In any case, the intersection $Z \cap E(\kappa)[\ell]$ is generated by two elements or less. Without loss of generality, let us suppose that the subgroup of Z generated by P_{2} and P_{3} contains $Z \cap E(\kappa)[\ell]$.

We are supposing that ℓ divides all the coefficients appearing in any linear relation of the points P_{i}. Let $\alpha_{1}=x_{1} \ell$ and write $x_{1} \ell P_{1}+x_{2} \ell P_{2}+x_{3} \ell P_{3}=0$ for some integers x_{2} and x_{3}. It follows that

$$
x_{1} P_{1}+x_{2} P_{2}+x_{3} P_{3}=T
$$

for some point T in $Z \cap E(\kappa)[\ell]$. The point T is a linear combination of P_{2} and P_{3} hence $x_{1} \in J_{1}$. Since α_{1} generates J_{1}, we have a contradiction.

In our counterexample, the only requirement for the elliptic curve E is that $E(k)$ has rank at least 3 . According to John Cremona's database [5], the elliptic curve given by the equation

$$
E: y^{2}+y=x^{3}-7 x+6
$$

has rank 3 over \mathbb{Q}. The three points $P_{1}:=(-2,3), P_{2}:=(-1,3)$ and $P_{3}:=(0,2)$ on E are \mathbb{Z}-linearly independent.

References

[1] S. Barańczuk, On a generalization of the support problem of Erdös and its analogues for abelian varieties and K-theory, Journal Pure Appl. Algebra 214 (2010) 380-384.
[2] G. Banaszak, On a Hasse principle for Mordell-Weil groups, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 709-714.
[3] G. Banaszak, P. Krasoń, On arithmetic in Mordell-Weil groups, arXiv:math/0904.2848, 2009.
[4] G. Banaszak, W. Gajda, P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2) (2005) 322-342.
[5] J. Cremona, Elliptic curve data, http://www.warwick.ac.uk/staff/J.E.Cremona/, 2009.
[6] W. Gajda, K. Górnisiewicz, Linear dependence in Mordell-Weil groups, J. Reine Angew. Math. 630 (2009) 219-233.
[7] P. Jossen, Detecting linear dependence on a semiabelian variety, arXiv:math/0903.5271, 2009.
[8] P. Jossen, On the arithmetic of 1-motives, Ph.D. thesis, Central European University Budapest, July 2009.
[9] C. Khare, Compatible systems of mod p Galois representations and Hecke characters, Math. Res. Lett. 10 (2003) 71-83.
[10] E. Kowalski, Some local-global applications of Kummer theory, Manuscripta Math. 111 (1) (2003) 105-139.
[11] A. Perucca, On the problem of detecting linear dependence for products of abelian varieties and tori, Acta Arith., in press.
[12] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975) 397-420.
[13] T. Weston, Kummer theory of abelian varieties and reduction of Mordell-Weil groups, Acta Arith. 110 (2003) 77-88.

[^0]: E-mail addresses: peter.jossen@gmail.com (P. Jossen), antonella.perucca@epfl.ch (A. Perucca).
 1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.11.019

