Probability Theory

Majorizing measures on metric spaces

Mesures majorantes sur des espaces métriques

Witold Bednorz ${ }^{1}$
Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

A R T I C L E I N F O

Article history:

Received 1 October 2009
Accepted 25 November 2009
Presented by Michel Talagrand

Abstract

In this Note we consider stochastic processes defined on a compact metric space (T, d), with bounded increments in the sense that $\mathbf{E} \varphi\left(\frac{\left|X_{s}-X_{t}\right|}{d(s, t)}\right) \leqslant 1$ for all $s, t \in T$, where φ is an Orlicz function, i.e. is convex, increasing, with $\varphi(0)=0$. We show that whenever d^{p} is still a metric on T for some $p>1$, then the sample boundedness of all processes with bounded increments can be understood in terms of the existence of a majorizing measure. © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Nous considérons des processus stochastiques définis sur un espace métrique compact (T, d), dont les accroissements sont bornés au sens suivant. On suppose que $\mathbf{E} \varphi\left(\frac{\left|X_{s}-X_{t}\right|}{d(s, t)}\right) \leqslant$ 1 pour tous $s, t \in T$, où φ une fonction d'Orlicz, c'est-à-dire convexe, croissante, telle que $\varphi(0)=0$. On suppose que $\mathbf{E} \varphi\left(\frac{\left|X_{s}-X_{t}\right|}{d(s, t)}\right) \leqslant 1$ pour tous $s, t \in T$. Nous montrons que si d^{p} est encore une distance pour un $p>1$, tous ces processus sont bornés si et seulement s'il existe une certaine mesure majorante sur T.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (T, d) be a compact metric space. We denote the diameter of T by $D(T)$ and an open ball with a center at $t \in T$ and radius r by $B(t, r)$. Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an Orlicz function, i.e. φ is convex, increasing, $\varphi(0)=0$. We say that the process X_{t}, $t \in T$, is of bounded increments if for all $s, t \in T$,

$$
\begin{equation*}
\mathbf{E} \varphi\left(\frac{|X(s)-X(t)|}{\mathrm{d}(s, t)}\right) \leqslant 1 \tag{1}
\end{equation*}
$$

Note that whenever (1) holds $\left(X_{t}\right)_{t \in T}$ has a separable modification, which we always use when considering the supremum of such a process. The problem, going back to Kolmogorov, is to characterize in terms of geometry of (T, d) whether or not all processes with bounded increments on the space are sample bounded. Such a property (see Talagrand [8]) is equivalent to the following condition:

$$
\mathcal{S}(T, d, \varphi):=\sup _{X} \mathbf{E} \sup _{s, t \in T}|X(s)-X(t)|<\infty,
$$

[^0]where the supremum is taken over all processes that satisfy (1). We recall (see Fernique [3]) that a Borel probability measure m on (T, d) is majorizing if
$$
\mathcal{M}(m, \varphi)=\sup _{t \in T} \int_{0}^{D(t)} \varphi^{-1}\left(\frac{1}{m(B(t, r))}\right) \mathrm{d} r<\infty
$$

We also say that m is weakly majorizing if

$$
\overline{\mathcal{M}}(m, \varphi)=\int_{T} \int_{0}^{D(T)} \varphi^{-1}\left(\frac{1}{m(B(t, r))}\right) \mathrm{d} r<\infty
$$

In [1] (see also [8, Theorem 4.6]) it was proved that the existence of majorizing measure is always sufficient for $S(T, d, \varphi)$ to be finite, namely we have $S(T, d, \varphi) \leqslant 32 \mathcal{M}(m, \varphi)$. However it is a non-trivial question to fully characterize Kolmogorov's property. The majorizing measure condition is not necessary, e.g. for the natural distance on subsets of \mathbb{R}^{n} (see [2,8]). On the other hand the condition is valid in many cases (see [8]). In this paper we follow Fernique's method [4] by which he proved that the majorizing measure condition is necessary for ultrametric spaces. The key tool is the following result:

Theorem 1 (Fernique). If $\sup _{m} \overline{\mathcal{M}}(m, \varphi)<\infty$, then there exists a majorizing measure on (T, d). In other words if all measures are weakly majorizing with a uniform constant, then there exists a majorizing measure on (T, d).

We say that d is regular if there exists a function $\zeta:[0, D(T)] \rightarrow \mathbb{R}_{+}$such that $\zeta(d)$ is still a metric on T, where ζ is convex, $\zeta(0)=0$ and satisfies the Δ_{2}-condition, i.e. there exists $C>1$ such that

$$
\begin{equation*}
2 C \zeta(x) \leqslant \zeta(C x), \quad \text { for all } 0 \leqslant x \leqslant D(T) / C \tag{2}
\end{equation*}
$$

In particular (2) is satisfied for $\zeta(x)=x^{1 / p}, p>1$. Our main result is the following:

Theorem 2. Whenever d is regular and all processes with bounded increments are sample bounded then each Borel m on (T, d) is weakly majorizing and $\sup _{m} \mathcal{M}(m, \varphi) \leqslant 16 C \mathcal{S}(T, d, \varphi)$.

2. Proof of Theorem 2

For a given m we construct $\left(X_{t}\right), t \in T$, with bounded increments that certifies m is weakly majorizing. Note that whenever $\omega \in T$ there exists a point $s \in T$ such that $\mathrm{d}(\omega, s) \geqslant D(T) / 2$. We define random variables X_{t} on the probability space $((T, d), m)$ by

$$
X_{t}(\omega)=c \int_{\mathrm{d}(t, \omega)}^{D(T) / 2} \varphi^{-1}\left(\frac{1}{m(B(\omega, 2 C r))}\right) \mathrm{d} r, \quad \omega \in T
$$

where we specify $0<c \leqslant 1$ later. Suppose we have proved that $\left(X_{t}\right)$, $t \in T$, verifies (1), then since we have assumed that all processes with bounded increments are sample bounded we learn that

$$
\mathbf{E} \sup _{s, t \in T}|X(t)-X(s)|=c \int_{T} \int_{0}^{D(T) / 2} \varphi^{-1}\left(\frac{1}{m(B(\omega, 2 C r))}\right) \mathrm{d} r m(\mathrm{~d} \omega) \leqslant \mathcal{S}(T, d, \varphi) .
$$

Changing variables $r=\varepsilon /(2 C)$ we obtain

$$
\int_{T} \int_{0}^{C D(T)} \varphi^{-1}\left(\frac{1}{m(B(\omega, r))}\right) \mathrm{d} r m(\mathrm{~d} \omega) \leqslant 2 c^{-1} C \mathcal{S}(T, d, \varphi)
$$

and therefore $\overline{\mathcal{M}}(\mu, \varphi) \leqslant 2 c^{-1} C \mathcal{S}(T, d, \varphi)$. Thus we only need to verify that (1) holds. Since $B(t, C r) \subset B(\omega, 2 C r)$ for $\mathrm{d}(t, \omega) \leqslant r$ and $B(s, C r) \subset B(\omega, 2 C r)$ for $\mathrm{d}(s, \omega) \leqslant r$ we obtain by Jensen's inequality that

$$
\begin{align*}
\mathbf{E} \varphi\left(\frac{|X(s)-X(t)|}{\mathrm{d}(s, t)}\right) \leqslant & \int_{T} \varphi\left(\left.\int_{\mathrm{d}(t, \omega)}^{\mathrm{d}(s, \omega)} \frac{c}{\mathrm{~d}(s, t)} \varphi^{-1}\left(\frac{1}{m(B(\omega, 2 C r))}\right) \mathrm{d} r \right\rvert\,\right) m(\mathrm{~d} \omega) \\
\leqslant & \int_{T} 1_{\{\mathrm{d}(t, \omega) \leqslant \mathrm{d}(s, \omega)\}} \frac{c}{\mathrm{~d}(s, t)} \int_{\mathrm{d}(t, \omega)}^{\mathrm{d}(s, \omega)} \frac{1}{m(B(t, C r))} \mathrm{d} r m(\mathrm{~d} \omega) \\
& +\int_{T} 1_{\{\mathrm{d}(s, \omega) \leqslant \mathrm{d}(t, \omega)\}} \frac{c}{\mathrm{~d}(s, t)} \int_{\mathrm{d}(t, \omega)}^{\mathrm{d}(s, \omega)} \frac{1}{m(B(s, C r))} \mathrm{d} r m(\mathrm{~d} \omega) \tag{3}
\end{align*}
$$

Then by Fubini's theorem $\int_{T} 1_{\{\mathrm{d}(t, \omega) \leqslant r \leqslant \mathrm{~d}(s, \omega)\}} m(\mathrm{~d} \omega)=m(B(t, r) \backslash B(s, r))$ and thus

$$
\begin{align*}
& \int_{T} 1_{\{\mathrm{d}(t, \omega) \leqslant \mathrm{d}(s, \omega)\}} \frac{c}{\mathrm{~d}(s, t)} \int_{\mathrm{d}(t, \omega)}^{\mathrm{d}(s, \omega)} \frac{1}{m(B(t, C r))} \mathrm{d} r m(\mathrm{~d} \omega) \\
& \quad \leqslant \int_{0}^{D(T)} \frac{c}{\mathrm{~d}(s, t)} \frac{m(B(t, r) \backslash B(s, r))}{m(B(t, C r))} \mathrm{d} r . \tag{4}
\end{align*}
$$

Now we use two different approaches to bound the right-hand side in (4). Clearly

$$
\begin{equation*}
\int_{T} \frac{c}{\mathrm{~d}(s, t)} \frac{m(B(t, r) \backslash B(s, r))}{B(t, C r)} \mathrm{d} r \leqslant c \tag{5}
\end{equation*}
$$

On the other hand the change of variables $r=\zeta^{-1}(\varepsilon)$ implies that

$$
\begin{equation*}
\int_{\mathrm{d}(s, t)}^{D(T)} \frac{c}{\mathrm{~d}(s, t)} \int_{\mathrm{d}(t \omega)}^{\mathrm{d}(s, \omega)} \frac{1}{m(B(t, C r))} \mathrm{d} r m(\mathrm{~d} \omega)=\int_{\zeta(\mathrm{d}(s, t))}^{\zeta(D(T))} \frac{c m\left(B\left(t, \zeta^{-1}(\varepsilon)\right) \backslash B\left(s, \zeta^{-1}(\varepsilon)\right)\right)}{\mathrm{d}(s, t) \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right)} \mathrm{d} \varepsilon \tag{6}
\end{equation*}
$$

Using that $\zeta(d)$ is a metric on T we deduce that

$$
B\left(t, \zeta^{-1}(\varepsilon)\right) \backslash B\left(s, \zeta^{-1}(\varepsilon)\right) \subset B\left(t, \zeta^{-1}(\varepsilon)\right) \backslash B\left(t, \zeta^{-1}(\varepsilon-\zeta(\mathrm{d}(s, t)))\right)
$$

therefore

$$
\begin{align*}
& \int_{\zeta(\mathrm{d}(s, t))}^{\zeta(D(T))} \frac{c m\left(B\left(t, \zeta^{-1}(\varepsilon)\right) \backslash B\left(s, \zeta^{-1}(\varepsilon)\right)\right)}{\mathrm{d}(s, t) \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right)} \mathrm{d} \varepsilon \\
& \quad \leqslant \int_{\zeta(\mathrm{d}(s, t))}^{\zeta(D(T))} \frac{m\left(B\left(t, \zeta^{-1}(\varepsilon)\right)\right)-m\left(B\left(t, \zeta^{-1}(\varepsilon-\zeta(\mathrm{d}(s, t)))\right)\right)}{\mathrm{d}(s, t) \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right)} \mathrm{d} \varepsilon \tag{7}
\end{align*}
$$

Let k_{0} be such that $C^{-k_{0}-1} D(T) \leqslant \mathrm{d}(s, t) \leqslant C^{-k_{0}} D(T)$. Note that for all $C^{-k-1} D(T)<\zeta^{-1}(\varepsilon) \leqslant C^{-k} D(T), 0 \leqslant k<k_{0}$, we have

$$
\begin{equation*}
\zeta^{\prime}\left(\zeta^{-1}\left(C^{-k-1} D(T)\right)\right) m\left(B\left(t, C^{-k} D(T)\right)\right) \leqslant \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\zeta\left(C^{-k-1} D(T)\right)}^{\zeta\left(C^{-k} D(T)\right)}\left(m\left(B\left(t, \zeta^{-1}(\varepsilon)\right)\right)-m\left(B\left(t, \zeta^{-1}(\varepsilon-\zeta(\mathrm{d}(s, t)))\right)\right)\right) \mathrm{d} \varepsilon \leqslant \zeta(\mathrm{~d}(s, t)) m\left(B\left(t, C^{-k} D(T)\right)\right) \tag{9}
\end{equation*}
$$

Combining (8) and (9) we obtain that

$$
\begin{equation*}
\int_{\zeta\left(C^{-k-1} D(T)\right)}^{\zeta\left(C^{-k} D(T)\right)} \frac{m\left(B\left(t, \zeta^{-1}(\varepsilon)\right)\right)-m\left(B\left(t, \zeta^{-1}(\varepsilon-\zeta(\mathrm{d}(s, t)))\right)\right)}{\mathrm{d}(s, t) \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right)} \mathrm{d} \varepsilon \leqslant \frac{c \zeta(\mathrm{~d}(s, t))}{\mathrm{d}(s, t) \zeta^{\prime}\left(C^{-k-1} D(T)\right)} \tag{10}
\end{equation*}
$$

for all $0 \leqslant k<k_{0}$. Similarly we show that

$$
\begin{equation*}
\int_{\zeta(\mathrm{d}(s, t))}^{\zeta\left(C^{-k_{0}} D(T)\right)} \frac{m\left(B\left(t, \zeta^{-1}(\varepsilon)\right)\right)-m\left(B\left(t, \zeta^{-1}(\varepsilon-\zeta(\mathrm{d}(s, t)))\right)\right)}{\mathrm{d}(s, t) \zeta^{\prime}\left(\zeta^{-1}(\varepsilon)\right) m\left(B\left(t, C \zeta^{-1}(\varepsilon)\right)\right)} \mathrm{d} \varepsilon \leqslant \frac{c \zeta(\mathrm{~d}(s, t))}{\mathrm{d}(s, t) \zeta^{\prime}(\mathrm{d}(s, t))} \tag{11}
\end{equation*}
$$

Using that C is the constant in (2) we obtain that

$$
\begin{equation*}
\frac{c \zeta(\mathrm{~d}(s, t))}{\mathrm{d}(s, t) \zeta^{\prime}\left(C^{-k-1} D(T)\right)} \leqslant \frac{c \zeta(\mathrm{~d}(s, t)) C^{-k-1} D(T)}{\mathrm{d}(s, t) \zeta\left(C^{k-1} D(T)\right)} \leqslant \frac{c}{2^{k_{0}-1-k}} \tag{12}
\end{equation*}
$$

for all $0 \leqslant k<k_{0}$. Inequalities (6), (7), (10), (11) and (12) lead to

$$
\begin{equation*}
\int_{\mathrm{d}(s, t)}^{D(T)} \frac{c}{\mathrm{~d}(s, t)} \frac{m(B(t, r) \backslash B(s, r))}{m(B(t, C r))} \mathrm{d} r \leqslant c+\sum_{k=0}^{k_{0}-1} \frac{c}{2^{k_{0}-1-k}} \leqslant 3 c . \tag{13}
\end{equation*}
$$

Plugging (5) and (13) into (4) and using (3) we obtain that

$$
\mathbf{E} \varphi\left(\frac{\left|X_{s}-X_{t}\right|}{\mathrm{d}(s, t)}\right) \leqslant 8 c, \quad \text { for all } s, t \in T
$$

Taking $c=1 / 8$ completes the proof.

3. Applications

The main application of the result is to the case $T \subset \mathbb{R}^{n}$ with the metric $\mathrm{d}(s, t)=\|s-t\|^{1 / p}$, for $p>1$. Note that Theorem 2 characterizes the sample boundedness of all processes $\left(X_{t}\right)_{t \in T}$ such that $\mathbf{E}\left|X_{s}-X_{t}\right|^{p} \leqslant\|s-t\|$ in terms of the existence of a majorizing measure.

Corollary 1. For $T \subset \mathbb{R}^{n}$ with $\mathrm{d}(s, t)=\|s-t\|^{1 / p}, p>1$, all processes that satisfy (1) are sample bounded if and only if there exists a majorizing measure on $(T, d)\left(\right.$ for $\left.\varphi(x) \equiv x^{p}\right)$.

This generalizes previous results in this direction (see [8, Section 5]). A closely related question (see [5]) is the characterization of coefficients $\left(a_{n}\right)_{n \geqslant 1}$ such that $\sum_{n=1}^{\infty} a_{n}^{2}=1$ and $\sum_{n=1}^{\infty} a_{n} \varphi_{n}$ is a.s. convergent for each orthonormal $\left(\varphi_{n}\right)_{n \geqslant 1}$. Defining $T_{a}=\left\{\sum_{n=m}^{\infty} a_{n}^{2}, m \geqslant 1\right\}$, with $\mathrm{d}(s, t)=\sqrt{|s-t|}$, we note that processes $X_{t}=\sum_{n \geqslant m} a_{n} \varphi_{n}$ for $t=t_{m}=\sum_{n \geqslant m} a_{n}^{2}$ satisfy $\mathbf{E}\left|X_{s}-X_{t}\right|^{2}=\mathrm{d}^{2}(s, t)$ for $s, t \in T_{a}$. On the other hand each process such that $\mathbf{E}\left|X_{s}-X_{t}\right|^{2}=\mathrm{d}^{2}(s, t)=|s-t|$ can be represented as $X_{t}=\sum_{n \geqslant m} a_{n} Y_{n}$, where $Y_{m}=\left(X_{t_{m}}-X_{t_{m+1}}\right) / a_{m}$ are clearly orthonormal. Therefore the problem can be reformulated in terms of the sample boundedness of all processes on T_{a} such that $\mathbf{E}\left|X_{s}-X_{t}\right|^{2}=\mathrm{d}^{2}(s, t)=|s-t|$. The question has a long history and partial results were given in [9-12]. A complete solution is obtained by Paszkiewicz in [7] (see also [6]). Our result - Corollary 1 - implies that the majorizing measure condition is necessary for the bigger class of processes to be sample bounded namely for all $\left(X_{t}\right)_{t \in T_{a}}$ such that $\mathbf{E}\left|X_{s}-X_{t}\right|^{2} \leqslant|s-t|$.

References

[1] W. Bednorz, A theorem on majorizing measures, Ann. Probab. 34 (5) (2006) 1771-1781.
[2] W. Bednorz, On a Sobolev type inequality and its applications, Studia Math. 176 (2) (2006) 95-112.
[3] X. Fernique, Caractérisation de processus à trajectoires majorées ou continues, in: Séminaire de Probabilités XII, in: Lecture Notes in Math., vol. 649, Springer, Berlin, 1978, pp. 691-706 (in French).
[4] X. Fernique, Régularite de fonctions aléatoires non gaussiennes, in: Ecole d'Été de Probabilités des Saint Flour XI, 1981, in: Lecture Notes in Math., vol. 976, Springer, 1983, pp. 1-74.
[5] V.F. Gapshkin, On convergence of orthogonal series, Dokl. Akad. Nauk SSSR 159 (1964) 234-246 (in Russian).
[6] J. Olejnik, On Characterization of a.e. Continuous Processes in L_{p}-space, preprint, Studia Mathematica (2009), in press.
[7] A. Paszkiewicz, The explicit characterization of coefficients of a.e. convergent orthogonal series, Compte Rendus 347 (19-20) (2008) 1213-1216.
[8] M. Talagrand, Sample boundedness of stochastic processes under increment conditions, Ann. Probab. 18 (1) (1990) 1-49.
[9] M. Talagrand, Convergence of orthogonal series using stochastic processes, preprint, 1994.
[10] K. Tandori, Orthogonalen Funktionen X, Acta Sci. Math. (Szeged) 23 (1962) 185-221.
[11] K. Tandori, Über die Konvergenz der Orthogonalerihen, Acta Sci. Math. 24 (1963) 139-151.
[12] M. Weber, Some theorems related to almost sure convergence of orthogonal series, Indag. Math. (N.S.) 11 (2000) 293-311.

[^0]: E-mail address: wbednorz@mimuw.edu.pl.
 ${ }^{1}$ Partially supported by the Funds of Grant MENiN 1 P03A 01229.

