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In this Note we consider stochastic processes defined on a compact metric space (T ,d),
with bounded increments in the sense that Eϕ(

|Xs−Xt |
d(s,t) ) � 1 for all s, t ∈ T , where ϕ is an

Orlicz function, i.e. is convex, increasing, with ϕ(0) = 0. We show that whenever dp is still
a metric on T for some p > 1, then the sample boundedness of all processes with bounded
increments can be understood in terms of the existence of a majorizing measure.
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r é s u m é

Nous considérons des processus stochastiques définis sur un espace métrique compact
(T ,d), dont les accroissements sont bornés au sens suivant. On suppose que Eϕ(

|Xs−Xt |
d(s,t) ) �

1 pour tous s, t ∈ T , où ϕ une fonction d’Orlicz, c’est-à-dire convexe, croissante, telle que
ϕ(0) = 0. On suppose que Eϕ(

|Xs−Xt |
d(s,t) ) � 1 pour tous s, t ∈ T . Nous montrons que si dp

est encore une distance pour un p > 1, tous ces processus sont bornés si et seulement s’il
existe une certaine mesure majorante sur T .

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (T ,d) be a compact metric space. We denote the diameter of T by D(T ) and an open ball with a center at t ∈ T and
radius r by B(t, r). Let ϕ : R+ → R+ be an Orlicz function, i.e. ϕ is convex, increasing, ϕ(0) = 0. We say that the process Xt ,
t ∈ T , is of bounded increments if for all s, t ∈ T ,

Eϕ

( |X(s) − X(t)|
d(s, t)

)
� 1. (1)

Note that whenever (1) holds (Xt)t∈T has a separable modification, which we always use when considering the supremum
of such a process. The problem, going back to Kolmogorov, is to characterize in terms of geometry of (T ,d) whether or not
all processes with bounded increments on the space are sample bounded. Such a property (see Talagrand [8]) is equivalent
to the following condition:

S(T ,d,ϕ) := sup
X

E sup
s,t∈T

∣∣X(s) − X(t)
∣∣ < ∞,
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where the supremum is taken over all processes that satisfy (1). We recall (see Fernique [3]) that a Borel probability measure
m on (T ,d) is majorizing if

M(m,ϕ) = sup
t∈T

D(t)∫
0

ϕ−1
(

1

m(B(t, r))

)
dr < ∞.

We also say that m is weakly majorizing if

M̄(m,ϕ) =
∫
T

D(T )∫
0

ϕ−1
(

1

m(B(t, r))

)
dr < ∞.

In [1] (see also [8, Theorem 4.6]) it was proved that the existence of majorizing measure is always sufficient for S(T ,d,ϕ)

to be finite, namely we have S(T ,d,ϕ) � 32M(m,ϕ). However it is a non-trivial question to fully characterize Kolmogorov’s
property. The majorizing measure condition is not necessary, e.g. for the natural distance on subsets of R

n (see [2,8]). On
the other hand the condition is valid in many cases (see [8]). In this paper we follow Fernique’s method [4] by which he
proved that the majorizing measure condition is necessary for ultrametric spaces. The key tool is the following result:

Theorem 1 (Fernique). If supm M̄(m,ϕ) < ∞, then there exists a majorizing measure on (T ,d). In other words if all measures are
weakly majorizing with a uniform constant, then there exists a majorizing measure on (T ,d).

We say that d is regular if there exists a function ζ : [0, D(T )] → R+ such that ζ(d) is still a metric on T , where ζ is
convex, ζ(0) = 0 and satisfies the �2-condition, i.e. there exists C > 1 such that

2Cζ(x) � ζ(Cx), for all 0 � x � D(T )/C . (2)

In particular (2) is satisfied for ζ(x) = x1/p , p > 1. Our main result is the following:

Theorem 2. Whenever d is regular and all processes with bounded increments are sample bounded then each Borel m on (T ,d) is
weakly majorizing and supm M̄(m,ϕ) � 16C S(T ,d,ϕ).

2. Proof of Theorem 2

For a given m we construct (Xt), t ∈ T , with bounded increments that certifies m is weakly majorizing. Note that when-
ever ω ∈ T there exists a point s ∈ T such that d(ω, s) � D(T )/2. We define random variables Xt on the probability space
((T ,d),m) by

Xt(ω) = c

D(T )/2∫
d(t,ω)

ϕ−1
(

1

m(B(ω,2Cr))

)
dr, ω ∈ T ,

where we specify 0 < c � 1 later. Suppose we have proved that (Xt), t ∈ T , verifies (1), then since we have assumed that all
processes with bounded increments are sample bounded we learn that

E sup
s,t∈T

∣∣X(t) − X(s)
∣∣ = c

∫
T

D(T )/2∫
0

ϕ−1
(

1

m(B(ω,2Cr))

)
dr m(dω) � S(T ,d,ϕ).

Changing variables r = ε/(2C) we obtain

∫
T

C D(T )∫
0

ϕ−1
(

1

m(B(ω, r))

)
dr m(dω) � 2c−1C S(T ,d,ϕ)

and therefore M̄(μ,ϕ) � 2c−1C S(T ,d,ϕ). Thus we only need to verify that (1) holds. Since B(t, Cr) ⊂ B(ω,2Cr) for
d(t,ω) � r and B(s, Cr) ⊂ B(ω,2Cr) for d(s,ω) � r we obtain by Jensen’s inequality that
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Eϕ

( |X(s) − X(t)|
d(s, t)

)
�

∫
T

ϕ

(∣∣∣∣∣
d(s,ω)∫

d(t,ω)

c

d(s, t)
ϕ−1

(
1

m(B(ω,2Cr))

)
dr

∣∣∣∣∣
)

m(dω)

�
∫
T

1{d(t,ω)�d(s,ω)}
c

d(s, t)

d(s,ω)∫
d(t,ω)

1

m(B(t, Cr))
dr m(dω)

+
∫
T

1{d(s,ω)�d(t,ω)}
c

d(s, t)

d(s,ω)∫
d(t,ω)

1

m(B(s, Cr))
dr m(dω). (3)

Then by Fubini’s theorem
∫

T 1{d(t,ω)�r�d(s,ω)}m(dω) = m(B(t, r)\B(s, r)) and thus

∫
T

1{d(t,ω)�d(s,ω)}
c

d(s, t)

d(s,ω)∫
d(t,ω)

1

m(B(t, Cr))
dr m(dω)

�
D(T )∫
0

c

d(s, t)

m(B(t, r)\B(s, r))

m(B(t, Cr))
dr. (4)

Now we use two different approaches to bound the right-hand side in (4). Clearly∫
T

c

d(s, t)

m(B(t, r)\B(s, r))

B(t, Cr)
dr � c. (5)

On the other hand the change of variables r = ζ−1(ε) implies that

D(T )∫
d(s,t)

c

d(s, t)

d(s,ω)∫
d(tω)

1

m(B(t, Cr))
dr m(dω) =

ζ(D(T ))∫
ζ(d(s,t))

cm(B(t, ζ−1(ε))\B(s, ζ−1(ε)))

d(s, t)ζ ′(ζ−1(ε))m(B(t, Cζ−1(ε)))
dε. (6)

Using that ζ(d) is a metric on T we deduce that

B
(
t, ζ−1(ε)

) \ B
(
s, ζ−1(ε)

) ⊂ B
(
t, ζ−1(ε)

) \ B
(
t, ζ−1(ε − ζ

(
d(s, t)

)))
,

therefore

ζ(D(T ))∫
ζ(d(s,t))

cm(B(t, ζ−1(ε))\B(s, ζ−1(ε)))

d(s, t)ζ ′(ζ−1(ε))m(B(t, Cζ−1(ε)))
dε

�
ζ(D(T ))∫

ζ(d(s,t))

m(B(t, ζ−1(ε))) − m(B(t, ζ−1(ε − ζ(d(s, t)))))

d(s, t)ζ ′(ζ−1(ε))m(B(t, Cζ−1(ε)))
dε. (7)

Let k0 be such that C−k0−1 D(T ) � d(s, t) � C−k0 D(T ). Note that for all C−k−1 D(T ) < ζ−1(ε) � C−k D(T ), 0 � k < k0, we
have

ζ ′(ζ−1(C−k−1 D(T )
))

m
(

B
(
t, C−k D(T )

))
� ζ ′(ζ−1(ε)

)
m

(
B
(
t, Cζ−1(ε)

))
(8)

and

ζ(C−k D(T ))∫
ζ(C−k−1 D(T ))

(
m

(
B
(
t, ζ−1(ε)

)) − m
(

B
(
t, ζ−1(ε − ζ

(
d(s, t)

)))))
dε � ζ

(
d(s, t)

)
m

(
B
(
t, C−k D(T )

))
. (9)

Combining (8) and (9) we obtain that

ζ(C−k D(T ))∫
−k−1

m(B(t, ζ−1(ε))) − m(B(t, ζ−1(ε − ζ(d(s, t)))))

d(s, t)ζ ′(ζ−1(ε))m(B(t, Cζ−1(ε)))
dε � cζ(d(s, t))

d(s, t)ζ ′(C−k−1 D(T ))
(10)
ζ(C D(T ))
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for all 0 � k < k0. Similarly we show that

ζ(C−k0 D(T ))∫
ζ(d(s,t))

m(B(t, ζ−1(ε))) − m(B(t, ζ−1(ε − ζ(d(s, t)))))

d(s, t)ζ ′(ζ−1(ε))m(B(t, Cζ−1(ε)))
dε � cζ(d(s, t))

d(s, t)ζ ′(d(s, t))
. (11)

Using that C is the constant in (2) we obtain that

cζ(d(s, t))

d(s, t)ζ ′(C−k−1 D(T ))
� cζ(d(s, t))C−k−1 D(T )

d(s, t)ζ(Ck−1 D(T ))
� c

2k0−1−k
(12)

for all 0 � k < k0. Inequalities (6), (7), (10), (11) and (12) lead to

D(T )∫
d(s,t)

c

d(s, t)

m(B(t, r)\B(s, r))

m(B(t, Cr))
dr � c +

k0−1∑
k=0

c

2k0−1−k
� 3c. (13)

Plugging (5) and (13) into (4) and using (3) we obtain that

Eϕ

( |Xs − Xt |
d(s, t)

)
� 8c, for all s, t ∈ T .

Taking c = 1/8 completes the proof.

3. Applications

The main application of the result is to the case T ⊂ R
n with the metric d(s, t) = ‖s − t‖1/p , for p > 1. Note that

Theorem 2 characterizes the sample boundedness of all processes (Xt)t∈T such that E|Xs − Xt |p � ‖s − t‖ in terms of the
existence of a majorizing measure.

Corollary 1. For T ⊂ R
n with d(s, t) = ‖s − t‖1/p , p > 1, all processes that satisfy (1) are sample bounded if and only if there exists a

majorizing measure on (T ,d) (for ϕ(x) ≡ xp).

This generalizes previous results in this direction (see [8, Section 5]). A closely related question (see [5]) is the charac-
terization of coefficients (an)n�1 such that

∑∞
n=1 a2

n = 1 and
∑∞

n=1 anϕn is a.s. convergent for each orthonormal (ϕn)n�1.
Defining Ta = {∑∞

n=m a2
n, m � 1}, with d(s, t) = √|s − t|, we note that processes Xt = ∑

n�m anϕn for t = tm = ∑
n�m a2

n

satisfy E|Xs − Xt |2 = d2(s, t) for s, t ∈ Ta . On the other hand each process such that E|Xs − Xt |2 = d2(s, t) = |s − t| can
be represented as Xt = ∑

n�m anYn , where Ym = (Xtm − Xtm+1)/am are clearly orthonormal. Therefore the problem can be

reformulated in terms of the sample boundedness of all processes on Ta such that E|Xs − Xt |2 = d2(s, t) = |s − t|. The
question has a long history and partial results were given in [9–12]. A complete solution is obtained by Paszkiewicz in [7]
(see also [6]). Our result – Corollary 1 – implies that the majorizing measure condition is necessary for the bigger class of
processes to be sample bounded namely for all (Xt)t∈Ta such that E|Xs − Xt |2 � |s − t|.
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