Enumeration of the 50 fake projective planes

Énumération des 50 faux plans projectifs

Donald I. Cartwright ${ }^{\text {a }}$, Tim Steger ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
${ }^{\mathrm{b}}$ Struttura di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy

ARTICLE INFO

Article history:

Received 4 August 2009
Accepted after revision 23 November 2009
Available online 29 December 2009
Presented by Pierre Deligne

Abstract

Building upon the classification of Prasad and Yeung [Invent. Math. 168 (2007) 321-370], we have shown that there exist exactly 50 fake projective planes (up to homeomorphism; 100 up to biholomorphism), and exhibited each of them explicitly as a quotient of the unit ball in \mathbb{C}^{2}. Some of these fake planes admit singular quotients by 3 element groups and three of these quotients are simply connected. Also exhibited are algebraic surfaces with $c_{1}^{2}=3 c_{2}=9 n$ for any positive integer n.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
R É S U M É
En partant de la classification de Prasad et Yeung [Invent. Math. 168 (2007) 321-370], nous montrons qu'il existe précisément 50 faux plans projectifs (à homéomorphisme près, 100 à biholomorphisme près), et présentons chacun comme un quotient de la boule unité de \mathbb{C}^{2}. Certains de ces plans admettent des quotients singuliers par des groupes d'automorphismes à 3 éléments, et trois d'entre eux sont simplement connexes. De plus, pour chaque entier $n>0$, nous présentons des surfaces algébriques avec $c_{1}^{2}=3 c_{2}=9 n$.
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A fake projective plane is a smooth compact complex surface M which is not biholomorphic to the complex projective plane $\mathbb{P}_{\mathbb{C}}^{2}$, but has the same Betti numbers as $\mathbb{P}_{\mathbb{C}}^{2}$, namely $1,0,1,0,1$. Mumford [9] constructed the first such surface and showed that only finitely many exist. Two more examples were found by Ishida and Kato [4], and another by Keum [5]. See Rémy [13] and Yeung [16] for recent surveys.

By [14], the universal cover of a fake projective plane M is the unit ball $B_{1}\left(\mathbb{C}^{2}\right)$ in \mathbb{C}^{2}. So the fundamental group Π is a cocompact torsion-free discrete subgroup Π of $P U(2,1)$ having finite abelianization. By Mostow's strong rigidity theorem, Π determines M up to holomorphic or anti-holomorphic equivalence. By [7], no fake projective plane can be anti-holomorphic to itself. By the Hirzebruch Proportionality Principle [3], Π must have covolume 1 in $P U(2,1)$. By [8,15], Π must be arithmetic. The algebraic group $\bar{G}(k)$ in which Π is arithmetic is described as follows (see [11]). There is a pair (k, ℓ) of number fields such that k is totally real and ℓ is a totally complex quadratic extension of k. There is a central simple algebra \mathcal{D} of degree 3 with center ℓ and an involution ι of the second kind on \mathcal{D} such that $k=\{x \in \ell: \iota(x)=x\}$. The algebraic group \bar{G} is defined over k such that $\bar{G}(k) \cong\{z \in \mathcal{D} \mid \iota(z) z=1\} /\{t \in \ell \mid \bar{t} t=1\}$. There is one Archimedean place v_{0} of k so that

[^0]$\bar{G}\left(k_{v_{0}}\right) \cong P U(2,1)$ and $\bar{G}\left(k_{v}\right)$ is compact for all other Archimedean places v. The data ($k, \ell, \mathcal{D}, v_{0}$) determines \bar{G} up to k isomorphism. Using Prasad's covolume formula [10], Prasad and Yeung [11,12] eliminated most ($k, \ell, \mathcal{D}, v_{0}$), and listed a small number of possibilities where Π 's might occur.

Moreover, their results (recast slightly) give a short list of maximal arithmetic subgroups $\bar{\Gamma}$ which might contain a Π. Each of these $\bar{\Gamma}$'s has the form $\bar{G}(k) \cap \prod_{v \in V_{f}} \bar{P}_{v}$, where V_{f} denotes the set of non-Archimedean places of k and where $\left\{\bar{P}_{v}: v \in V_{f}\right\}$ is a coherent family of maximal parahoric subgroups $\bar{P}_{v} \leqslant \bar{G}\left(k_{v}\right)$. For all but three Π 's, there is a unique $\bar{\Gamma}$ containing it. In the remaining three cases, Π is contained in two maximal arithmetic subgroups, whose intersection is a group $\bar{G}(k) \cap \prod_{v \in V_{f}} \bar{P}_{v}$, where one of the \bar{P}_{v} 's is Iwahori, rather than maximal. In all cases the class of Π is specified by k, ℓ, \mathcal{D} and the family $\left\{\bar{P}_{v}: v \in V_{f}\right\}$. For each class there is an integer $N \geqslant 1$ such that the fundamental groups of the fake projective planes are the torsion-free subgroups Π of index N in the corresponding $\bar{G}(k) \cap \prod_{v \in V_{f}} \bar{P}_{v}$ having finite abelianization.

One uses lattices to describe concretely the parahoric subgroups \bar{P}_{v} involved in each class. If $v \in V_{f}$ splits in ℓ and if $\bar{G}\left(k_{v}\right)$ is not compact, then $\bar{G}\left(k_{v}\right) \cong \operatorname{PGL}\left(3, k_{v}\right)$. The maximal parahoric subgroup \bar{P}_{v} is conjugate to $\operatorname{PGL}\left(3, \mathcal{O}_{v}\right)$, where \mathcal{O}_{v} is the valuation ring in k_{v}. When $v \in V_{f}$ does not split in ℓ, denote also by v the unique place of ℓ over v. Let k_{v} and ℓ_{v} be the corresponding completions, \mathcal{O}_{v} the valuation ring in ℓ_{v}, and π_{v} a uniformizer of ℓ_{v}. Then ι induces a nondegenerate hermitian form h_{v} on ℓ_{v}^{3}, and $\bar{G}\left(k_{v}\right) \cong P U\left(h_{v}\right)$. So $\bar{G}\left(k_{v}\right)$ acts on the set of \mathcal{O}_{v}-lattices in $\ell_{\underline{v}}^{3}$. The dual \mathcal{L}^{\prime} of a lattice \mathcal{L} is the lattice $\mathcal{L}^{\prime}=\left\{y \in \ell_{v}^{3}: h_{v}(x, y) \in \mathcal{O}_{v}\right.$ for all $\left.x \in \mathcal{L}\right\}$. We shall say that a maximal parahoric \bar{P}_{v} is of type 1 if it is the stabilizer of a self-dual lattice \mathcal{L}_{1}, and of type 2 if it is the stabilizer of a lattice \mathcal{L}_{2} such that $\pi_{v} \mathcal{L}_{2} \varsubsetneqq \mathcal{L}_{2}^{\prime} \varsubsetneqq \mathcal{L}_{2}$. See [2] for further details. A parahoric \bar{P}_{v} is an Iwahori subgroup if it is the intersection of one maximal parahoric of each type, corresponding to two lattices $\mathcal{L}_{1}, \mathcal{L}_{2}$ as above, satisfying also $\pi_{v} \mathcal{L}_{2} \subset \mathcal{L}_{1} \subset \mathcal{L}_{2}$.

Let \mathcal{T}_{1} denote the set of $v \in V_{f}$ such that v does not split in ℓ and \bar{P}_{v} is maximal parahoric of type 2 . For the 3 classes in which a \bar{P}_{v} is Iwahori, this happens when v is the 2-adic place; for all other places v^{\prime} of k not splitting in $\ell, \bar{P}_{v^{\prime}}$ is of type 1 , and we write $\mathcal{T}_{1}=\{2 I\}$.

2. Results

We have found a presentation for each relevant $\bar{\Gamma}$, and enumerated the (conjugacy classes of) subgroups Π of index N in $\bar{\Gamma}$ such that Π is torsion-free and has finite abelianization.

When \mathcal{D} splits over ℓ, [11, Proposition 8.8] shows that there are at most 5 possible pairs (k, ℓ), which [11] denotes \mathcal{C}_{1}, $\mathcal{C}_{8}, \mathcal{C}_{11}, \mathcal{C}_{18}$ and \mathcal{C}_{21}. Our first theorem verifies a conjecture in [11].

Theorem 2.1. For each of the classes arising from these five field pairs there are no torsion-free subgroups Π of $\bar{\Gamma}$ of index N having finite abelianization. So no fake projective planes occur in these cases.

In all but one of these classes there is no torsion-free subgroup of $\bar{\Gamma}$ of index N. For the class $\left(\mathcal{C}_{11}, \mathcal{T}_{1}=\emptyset\right)$, for which $k=\mathbb{Q}(\sqrt{3}), \ell=\mathbb{Q}(\sqrt{3}, i)$ and $N=864$, we show that there is, up to conjugacy, a unique torsion-free subgroup of $\bar{\Gamma}$ of index N. Its abelianization is \mathbb{Z}^{2}. So for each integer $n \geqslant 1$ there is a normal subgroup Π_{n} of Π of index n. Then [14, Theorem 4] $M_{n}=B_{1}\left(\mathbb{C}^{2}\right) / \Pi_{n}$ satisfies $c_{1}\left(M_{n}\right)^{2}=3 c_{2}\left(M_{n}\right)=9 n$.

When \mathcal{D} does not split over ℓ, i.e., is a division algebra, it turns out that there is a unique $v \in V_{f}$ for which $\bar{G}\left(k_{v}\right)$ is compact. This splits over ℓ and lies over the p-adic place of \mathbb{Q}, for the p listed in the tables below. Prasad and Yeung [11,12] showed that there are precisely 28 classes, and showed that each is non-empty. The classes are specified by the pairs (k, ℓ) and the p and \mathcal{T}_{1} listed in Tables 1 and 2.

Theorem 2.2. Up to automorphisms of $P U(2,1)$, there are precisely 50 subgroups Π of $P U(2,1)$ which are fundamental groups of fake projective planes. The number of Π 's in each class is listed in Tables 1 and 2.

In Tables 1 and $2, \mathcal{C}_{2}, \mathcal{C}_{10}, \mathcal{C}_{18}$ and \mathcal{C}_{20} are notations from [11]. The place $17-$ of $\mathbb{Q}(\sqrt{2})$ is the 17 -adic place for which $\sqrt{2} \equiv-6$. Most of these Π 's are congruence subgroups, determined by calculable congruence conditions. However, at least one Π is not a congruence subgroup.

Armed with a presentation of each of the $28 \bar{\Gamma}$'s, we are able to list not only the subgroups Π of index N, but also the subgroups H such that $\Pi<H \leqslant \bar{\Gamma}$. These give singular surfaces $M_{H}=B_{1}\left(\mathbb{C}^{2}\right) / H$ covered by $M=B_{1}\left(\mathbb{C}^{2}\right) / \Pi$ and having fundamental group $\pi_{1}\left(M_{H}\right)=H /\langle$ torsion elements in $H\rangle$ [1]. In particular, the fundamental groups appearing in this way when $[H: \Pi]=3$ are $\{1\}, C_{2}, C_{3}, C_{4}, C_{6}, C_{7}, C_{13}, C_{14}, C_{2} \times C_{2}, C_{2} \times C_{4}, S_{3}, D_{8}$ and Q_{8}. Here C_{n} denotes the cyclic group of order n, S_{3} is the symmetric group of order 6 , and D_{8} and Q_{8} are the dihedral and quaternionic groups of order 8 . In the case $\Pi \triangleleft H$, Keum [6] obtained much information about the possible M_{H} from general considerations.

We conclude with a brief description of our methods. In the division algebra case we first realized \mathcal{D} concretely as a cyclic simple algebra over ℓ splitting except at the two places of ℓ corresponding to p. We chose an ℓ so that $\bar{G}\left(k_{v_{0}}\right) \cong P U(2,1)$ for one Archimedean place v_{0} of k (and $\bar{G}\left(k_{v}\right) \cong P U(3)$ at the other Archimedean place v when $[k: \mathbb{Q}]=2)$. For each v we found concrete conditions for an element $g \in \bar{G}\left(k_{v}\right)$ to belong to \bar{P}_{v} using lattices, as above.

Table 1

The cases $k=\mathbb{Q}$.

ℓ	p	\mathcal{T}_{1}	N	$\sharp \Pi ’ s$
$\mathbb{Q}(\sqrt{-1})$	5	\emptyset	3	1
		$\{2\}$	3	1
		$\{2 I\}$	1	1
$\mathbb{Q}(\sqrt{-2})$	3	\emptyset	3	1
		$\{2\}$	3	1
		$\{2 I\}$	1	1
$\mathbb{Q}(\sqrt{-7})$	2	\emptyset	21	3
		$\{7\}$	21	4
		$\{3\}$	3	2
		$\{3,7\}$	3	2
		$\{5\}$	1	1
	2	\emptyset	1	1
$\mathbb{Q}(\sqrt{-15})$		$\{3\}$	3	2
		$\{5\}$	3	3
		$\{3,5\}$	3	2
		\emptyset	1	3
$\mathbb{Q}(\sqrt{-23})$	2	$\{23\}$	1	1
			Total:	31

Table 2
The cases $k \neq \mathbb{Q}$.

	k, ℓ	p	\mathcal{T}_{1}	N	$\sharp \Pi ’ s$
\mathcal{C}_{2}	$k=\mathbb{Q}(\sqrt{5})$	2	\emptyset	9	6
	$\ell=k(\sqrt{-3})$		$\{3\}$	9	1
\mathcal{C}_{10}	$k=\mathbb{Q}(\sqrt{2})$	2	\emptyset	3	1
	$\ell=k(\sqrt{-5+2 \sqrt{2}})$		$\{17-\}$	3	1
\mathcal{C}_{18}	$k=\mathbb{Q}(\sqrt{6})$	3	\emptyset	9	1
	$\ell=k(\sqrt{-3})$		$\{2\}$	3	3
			$\{2 I\}$	1	1
\mathcal{C}_{20}	$k=\mathbb{Q}(\sqrt{7})$	2	\emptyset	21	1
	$\ell=k(\sqrt{-1})$		$\{3+\}$	3	2
			$\{3-\}$	3	2
				Total:	19

Computer searches (particularly lengthy in the \mathcal{C}_{10} case) were then done to find sufficiently many elements of $\bar{\Gamma}$ to contain a generating set S. To verify that S generates $\bar{\Gamma}$, we first calculated the radius r_{0} and then the volume of the Dirichlet fundamental domain of the subgroup $\langle S\rangle$ generated by S. We checked that this volume matches the covolume of $\bar{\Gamma}$, known from [11], so that $\langle S\rangle=\bar{\Gamma}$. We then enumerated the set of $g \in \bar{\Gamma}$ such that $d(g(0), 0) \leqslant 2 r_{0}$. We used this to (i) find a presentation of $\bar{\Gamma}$ and (ii) list a set of representatives of the conjugacy classes of torsion elements in $\bar{\Gamma}$. We then used Magma (see http://magma.maths.usyd.edu.au/magma/) and GAP (see http://www.gap-system.org) to find all conjugacy classes of subgroups Π of $\bar{\Gamma}$ with the requisite index N. We used (ii) to check which of these were torsion-free. We verified that the abelianization of Π was finite in each case. In the matrix algebra cases, we found finite subgroups K of $\bar{\Gamma}$ and used the fact that if Π is a torsion-free subgroup of $\bar{\Gamma}$ then K acts on $\bar{\Gamma} / \Pi$ without fixed points to exclude the existence of Π of index N and finite abelianization. Many of our results are dependent on computer programs we wrote (see http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/).

As an example, let us give some details for the class corresponding to $k=\mathbb{Q}, \ell=\mathbb{Q}(\sqrt{-7})$ and $\mathcal{T}_{1}=\{7\}$. Let $m=\mathbb{Q}(\zeta)$, where $\zeta=e^{2 \pi i / 7}$, which is a degree 3 extension of ℓ with Galois group $\operatorname{Gal}(m / \ell)=\langle\varphi\rangle$, where $\varphi(\zeta)=\zeta^{2}$. Let \mathcal{D} be the central simple algebra over ℓ generated by m and σ, with $\sigma^{3}=(3+\sqrt{-7}) / 4$ and $\sigma x=\varphi(x) \sigma$ for $x \in m$. There is an involution ι_{0} of \mathcal{D} of the second kind which maps σ to σ^{-1} and ζ to ζ^{-1}. We replace ι_{0} by $\iota: \xi \mapsto w^{-1} \iota_{0}(\xi) w$, where $w=\zeta+\zeta^{-1}$, to get the desired behaviour $\bar{G}(\mathbb{R}) \cong P U(2,1)$. Then $\bar{\Gamma}$ is generated by ζ and $b=\frac{1}{7} \sum_{j=0}^{5} \sum_{k=-1}^{1} b_{j k} \zeta^{j} \sigma^{k}$ for coefficients $-9,-3,6,-4,1,-2,1,-2,-3,-1,-5,3,-3,-8,2,2,-4,-6$ in the order $b_{0,-1}, b_{0,0}, b_{0,1}, b_{1,-1}, \ldots, b_{5,1}$. Mumford's original plane is contained in this class.

References

[1] M.A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968) $299-301$.
[2] D.I. Cartwright, T. Steger, Application of the Bruhat-Tits tree of $S U_{3}(h)$ to some \tilde{A}_{2} groups, J. Aust. Math. Soc. 64 (1998) 329-344.
[3] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, in: 1958 Symposium Internacional de Topologia Algebraica, UNESCO, pp. 129-144.
[4] M.-N. Ishida, F. Kato, The strong rigidity theorem for non-Archimedean uniformization, Tohoku Math. J. 50 (1998) 537-555.
[5] J. Keum, A fake projective plane with an order 7 automorphism, Topology 45 (2006) 919-927.
[6] J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008) 2497-2515.
[7] V.S. Kharlamov, V.M. Kulikov, On real structures on rigid surfaces, Izv. Math. 66 (2002) 133-150.
[8] B. Klingler, Sur la rigidité de certains groupes fondamentaux, l'arithméticité des réseaux hyperboliques complexes, et les «faux plans projectifs», Invent. Math. 153 (2003) 105-143.
[9] D. Mumford, An algebraic surface with K ample, $K^{2}=9, p_{g}=q=0$, Amer. J. Math. 101 (1979) 233-244.
[10] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989) 91-117.
[11] G. Prasad, S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007) 321-370.
[12] G. Prasad, S.-K. Yeung, Fake projective planes, Addendum, in press.
[13] R. Rémy, Covolume des groupes S-arithmétiques et faux plans projectifs [d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung], Séminaire Bourbaki, 60ème année, 2007-2008, no. 984.
[14] S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA 74 (1977) 1798-1799.
[15] S.-K. Yeung, Integrality and arithmeticity of co-compact lattices corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004) 107-130.
[16] S.-K. Yeung, Classification of fake projective planes, in: Handbook of Geometric Analysis, vol. 2, in press.

[^0]: E-mail addresses: D.Cartwright@maths.usyd.edu.au (D.I. Cartwright), steger@uniss.it (T. Steger).
 1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.11.016

