

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group Theory/Algebraic Geometry

Enumeration of the 50 fake projective planes

Énumération des 50 faux plans projectifs

Donald I. Cartwright^a, Tim Steger^b

^a School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
^b Struttura di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy

ARTICLE INFO

Article history: Received 4 August 2009 Accepted after revision 23 November 2009 Available online 29 December 2009

Presented by Pierre Deligne

ABSTRACT

Building upon the classification of Prasad and Yeung [Invent. Math. 168 (2007) 321–370], we have shown that there exist exactly 50 fake projective planes (up to homeomorphism; 100 up to biholomorphism), and exhibited each of them explicitly as a quotient of the unit ball in \mathbb{C}^2 . Some of these fake planes admit singular quotients by 3 element groups and three of these quotients are simply connected. Also exhibited are algebraic surfaces with $c_1^2 = 3c_2 = 9n$ for any positive integer *n*.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

En partant de la classification de Prasad et Yeung [Invent. Math. 168 (2007) 321–370], nous montrons qu'il existe précisément 50 faux plans projectifs (à homéomorphisme près, 100 à biholomorphisme près), et présentons chacun comme un quotient de la boule unité de \mathbb{C}^2 . Certains de ces plans admettent des quotients singuliers par des groupes d'automorphismes à 3 éléments, et trois d'entre eux sont simplement connexes. De plus, pour chaque entier n > 0, nous présentons des surfaces algébriques avec $c_1^2 = 3c_2 = 9n$.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A *fake projective plane* is a smooth compact complex surface M which is not biholomorphic to the complex projective plane $\mathbb{P}^2_{\mathbb{C}}$, but has the same Betti numbers as $\mathbb{P}^2_{\mathbb{C}}$, namely 1, 0, 1, 0, 1. Mumford [9] constructed the first such surface and showed that only finitely many exist. Two more examples were found by Ishida and Kato [4], and another by Keum [5]. See Rémy [13] and Yeung [16] for recent surveys.

By [14], the universal cover of a fake projective plane M is the unit ball $B_1(\mathbb{C}^2)$ in \mathbb{C}^2 . So the fundamental group Π is a cocompact torsion-free discrete subgroup Π of PU(2, 1) having finite abelianization. By Mostow's strong rigidity theorem, Π determines M up to holomorphic or anti-holomorphic equivalence. By [7], no fake projective plane can be anti-holomorphic to itself. By the Hirzebruch Proportionality Principle [3], Π must have covolume 1 in PU(2, 1). By [8,15], Π must be arithmetic. The algebraic group $\bar{G}(k)$ in which Π is arithmetic is described as follows (see [11]). There is a pair (k, ℓ) of number fields such that k is totally real and ℓ is a totally complex quadratic extension of k. There is a central simple algebra \mathcal{D} of degree 3 with center ℓ and an involution ι of the second kind on \mathcal{D} such that $k = \{x \in \ell : \iota(x) = x\}$. The algebraic group $\bar{G}(k) \cong \{z \in \mathcal{D} \mid \iota(z)z = 1\}/\{t \in \ell \mid \bar{t}t = 1\}$. There is one Archimedean place v_0 of k so that

E-mail addresses: D.Cartwright@maths.usyd.edu.au (D.I. Cartwright), steger@uniss.it (T. Steger).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.11.016

 $\bar{G}(k_{v_0}) \cong PU(2, 1)$ and $\bar{G}(k_v)$ is compact for all other Archimedean places v. The data $(k, \ell, \mathcal{D}, v_0)$ determines \bar{G} up to k-isomorphism. Using Prasad's covolume formula [10], Prasad and Yeung [11,12] eliminated most $(k, \ell, \mathcal{D}, v_0)$, and listed a small number of possibilities where Π 's might occur.

Moreover, their results (recast slightly) give a short list of maximal arithmetic subgroups $\overline{\Gamma}$ which might contain a Π . Each of these $\overline{\Gamma}$'s has the form $\overline{G}(k) \cap \prod_{v \in V_f} \overline{P}_v$, where V_f denotes the set of non-Archimedean places of k and where $\{\overline{P}_v: v \in V_f\}$ is a coherent family of maximal parahoric subgroups $\overline{P}_v \leq \overline{G}(k_v)$. For all but three Π 's, there is a unique $\overline{\Gamma}$ containing it. In the remaining three cases, Π is contained in two maximal arithmetic subgroups, whose intersection is a group $\overline{G}(k) \cap \prod_{v \in V_f} \overline{P}_v$, where one of the \overline{P}_v 's is lwahori, rather than maximal. In all cases the *class* of Π is specified by k, ℓ, \mathcal{D} and the family $\{\overline{P}_v: v \in V_f\}$. For each class there is an integer $N \ge 1$ such that the fundamental groups of the fake projective planes are the torsion-free subgroups Π of index N in the corresponding $\overline{G}(k) \cap \prod_{v \in V_f} \overline{P}_v$ having finite abelianization.

One uses lattices to describe concretely the parahoric subgroups \bar{P}_v involved in each class. If $v \in V_f$ splits in ℓ and if $\bar{G}(k_v)$ is not compact, then $\bar{G}(k_v) \cong PGL(3, k_v)$. The maximal parahoric subgroup \bar{P}_v is conjugate to $PGL(3, \mathcal{O}_v)$, where \mathcal{O}_v is the valuation ring in k_v . When $v \in V_f$ does not split in ℓ , denote also by v the unique place of ℓ over v. Let k_v and ℓ_v be the corresponding completions, \mathcal{O}_v the valuation ring in ℓ_v , and π_v a uniformizer of ℓ_v . Then ι induces a nondegenerate hermitian form h_v on ℓ_v^3 , and $\bar{G}(k_v) \cong PU(h_v)$. So $\bar{G}(k_v)$ acts on the set of \mathcal{O}_v -lattices in ℓ_y^3 . The dual \mathcal{L}' of a lattice \mathcal{L} is the lattice $\mathcal{L}' = \{y \in \ell_v^3 : h_v(x, y) \in \mathcal{O}_v$ for all $x \in \mathcal{L}\}$. We shall say that a maximal parahoric \bar{P}_v is of type 1 if it is the stabilizer of a self-dual lattice \mathcal{L}_1 , and of type 2 if it is the stabilizer of a lattice \mathcal{L}_2 such that $\pi_v \mathcal{L}_2 \subseteq \mathcal{L}'_2 \subseteq \mathcal{L}_2$. See [2] for further details. A parahoric \bar{P}_v is an Iwahori subgroup if it is the intersection of one maximal parahoric of each type, corresponding to two lattices \mathcal{L}_1 , \mathcal{L}_2 as above, satisfying also $\pi_v \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_2$.

Let \mathcal{T}_1 denote the set of $v \in V_f$ such that v does not split in ℓ and \overline{P}_v is maximal parahoric of type 2. For the 3 classes in which a \overline{P}_v is Iwahori, this happens when v is the 2-adic place; for all other places v' of k not splitting in ℓ , $\overline{P}_{v'}$ is of type 1, and we write $\mathcal{T}_1 = \{2I\}$.

2. Results

We have found a presentation for each relevant $\overline{\Gamma}$, and enumerated the (conjugacy classes of) subgroups Π of index N in $\overline{\Gamma}$ such that Π is torsion-free and has finite abelianization.

When \mathcal{D} splits over ℓ , [11, Proposition 8.8] shows that there are at most 5 possible pairs (k, ℓ) , which [11] denotes \mathcal{C}_1 , \mathcal{C}_8 , \mathcal{C}_{11} , \mathcal{C}_{18} and \mathcal{C}_{21} . Our first theorem verifies a conjecture in [11].

Theorem 2.1. For each of the classes arising from these five field pairs there are no torsion-free subgroups Π of $\overline{\Gamma}$ of index N having finite abelianization. So no fake projective planes occur in these cases.

In all but one of these classes there is no torsion-free subgroup of $\overline{\Gamma}$ of index *N*. For the class $(\mathcal{C}_{11}, \mathcal{T}_1 = \emptyset)$, for which $k = \mathbb{Q}(\sqrt{3}), \ell = \mathbb{Q}(\sqrt{3}, i)$ and N = 864, we show that there is, up to conjugacy, a unique torsion-free subgroup of $\overline{\Gamma}$ of index *N*. Its abelianization is \mathbb{Z}^2 . So for each integer $n \ge 1$ there is a normal subgroup Π_n of Π of index *n*. Then [14, Theorem 4] $M_n = B_1(\mathbb{C}^2)/\Pi_n$ satisfies $c_1(M_n)^2 = 3c_2(M_n) = 9n$.

When \mathcal{D} does not split over ℓ , i.e., is a division algebra, it turns out that there is a unique $v \in V_f$ for which $\overline{G}(k_v)$ is compact. This splits over ℓ and lies over the *p*-adic place of \mathbb{Q} , for the *p* listed in the tables below. Prasad and Yeung [11,12] showed that there are precisely 28 classes, and showed that each is non-empty. The classes are specified by the pairs (k, ℓ) and the *p* and \mathcal{T}_1 listed in Tables 1 and 2.

Theorem 2.2. Up to automorphisms of PU(2, 1), there are precisely 50 subgroups Π of PU(2, 1) which are fundamental groups of fake projective planes. The number of Π 's in each class is listed in Tables 1 and 2.

In Tables 1 and 2, C_2 , C_{10} , C_{18} and C_{20} are notations from [11]. The place 17- of $\mathbb{Q}(\sqrt{2})$ is the 17-adic place for which $\sqrt{2} \equiv -6$. Most of these Π 's are congruence subgroups, determined by calculable congruence conditions. However, at least one Π is not a congruence subgroup.

Armed with a presentation of each of the 28 $\overline{\Gamma}$'s, we are able to list not only the subgroups Π of index N, but also the subgroups H such that $\Pi < H \leq \overline{\Gamma}$. These give singular surfaces $M_H = B_1(\mathbb{C}^2)/H$ covered by $M = B_1(\mathbb{C}^2)/\Pi$ and having fundamental group $\pi_1(M_H) = H/\langle \text{torsion elements in } H \rangle$ [1]. In particular, the fundamental groups appearing in this way when $[H : \Pi] = 3$ are {1}, C_2 , C_3 , C_4 , C_6 , C_7 , C_{13} , C_{14} , $C_2 \times C_2$, $C_2 \times C_4$, S_3 , D_8 and Q_8 . Here C_n denotes the cyclic group of order n, S_3 is the symmetric group of order 6, and D_8 and Q_8 are the dihedral and quaternionic groups of order 8. In the case $\Pi \triangleleft H$, Keum [6] obtained much information about the possible M_H from general considerations.

We conclude with a brief description of our methods. In the division algebra case we first realized \mathcal{D} concretely as a cyclic simple algebra over ℓ splitting except at the two places of ℓ corresponding to p. We chose an ι so that $\bar{G}(k_{v_0}) \cong PU(2, 1)$ for one Archimedean place v_0 of k (and $\bar{G}(k_v) \cong PU(3)$ at the other Archimedean place v when $[k:\mathbb{Q}] = 2$). For each v we found concrete conditions for an element $g \in \bar{G}(k_v)$ to belong to \bar{P}_v using lattices, as above.

Table 1 The cases k = 0

l	р	\mathcal{T}_1	Ν	<i>♯Π</i> 's
$\mathbb{Q}(\sqrt{-1})$	5	Ø	3	1
		{2}	3	1
		{21}	1	1
$\mathbb{Q}(\sqrt{-2})$	3	Ø	3	1
		{2}	3	1
		{21}	1	1
$\mathbb{Q}(\sqrt{-7})$	2	Ø	21	3
		{7}	21	4
		{3}	3	2 2
		{3, 7}	3	2
		{5}	1	1
		{5,7}	1	1
$\mathbb{Q}(\sqrt{-15})$	2	Ø	3	2
		{3 }	3	3
		{5}	3	2
		{3,5}	3	3
$\mathbb{Q}(\sqrt{-23})$	2	Ø	1	1
		{23}	1	1
			Total:	31

Table 2	
The cases	$k \neq 0$

	k, l	р	\mathcal{T}_1	Ν	‡ <i>Π</i> 's
C_2	$k = \mathbb{Q}(\sqrt{5})$	2	Ø	9	6
	$\ell = k(\sqrt{-3})$		{3}	9	1
C_{10}	$k = \mathbb{Q}(\sqrt{2})$	2	Ø	3	1
	$\ell = k(\sqrt{-5 + 2\sqrt{2}})$		{17-}	3	1
C_{18}	$k = \mathbb{Q}(\sqrt{6})$	3	Ø	9	1
	$\ell = k(\sqrt{-3})$		{2}	3	3
	,		{2 <i>I</i> }	1	1
C_{20}	$k = \mathbb{Q}(\sqrt{7})$	2	ø	21	1
	$\ell = k(\sqrt{-1})$		{3+}	3	2
	v = n(v 1)		{3-}	3	2
				Total:	19

Computer searches (particularly lengthy in the C_{10} case) were then done to find sufficiently many elements of $\overline{\Gamma}$ to contain a generating set *S*. To verify that *S* generates $\overline{\Gamma}$, we first calculated the radius r_0 and then the volume of the Dirichlet fundamental domain of the subgroup $\langle S \rangle$ generated by *S*. We checked that this volume matches the covolume of $\overline{\Gamma}$, known from [11], so that $\langle S \rangle = \overline{\Gamma}$. We then enumerated the set of $g \in \overline{\Gamma}$ such that $d(g(0), 0) \leq 2r_0$. We used this to (i) find a presentation of $\overline{\Gamma}$ and (ii) list a set of representatives of the conjugacy classes of torsion elements in $\overline{\Gamma}$. We then used Magma (see http://magma.maths.usyd.edu.au/magma/) and GAP (see http://www.gap-system.org) to find all conjugacy classes of subgroups Π of $\overline{\Gamma}$ with the requisite index *N*. We used (ii) to check which of these were torsion-free. We verified that the abelianization of Π was finite in each case. In the matrix algebra cases, we found finite subgroups *K* of $\overline{\Gamma}$ and used the fact that if Π is a torsion-free subgroup of $\overline{\Gamma}$ then *K* acts on $\overline{\Gamma}/\Pi$ without fixed points to exclude the existence of Π of index *N* and finite abelianization. Many of our results are dependent on computer programs we wrote (see http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/).

As an example, let us give some details for the class corresponding to $k = \mathbb{Q}$, $\ell = \mathbb{Q}(\sqrt{-7})$ and $\mathcal{T}_1 = \{7\}$. Let $m = \mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/7}$, which is a degree 3 extension of ℓ with Galois group $\operatorname{Gal}(m/\ell) = \langle \varphi \rangle$, where $\varphi(\zeta) = \zeta^2$. Let \mathcal{D} be the central simple algebra over ℓ generated by m and σ , with $\sigma^3 = (3 + \sqrt{-7})/4$ and $\sigma x = \varphi(x)\sigma$ for $x \in m$. There is an involution ι_0 of \mathcal{D} of the second kind which maps σ to σ^{-1} and ζ to ζ^{-1} . We replace ι_0 by $\iota: \xi \mapsto w^{-1}\iota_0(\xi)w$, where $w = \zeta + \zeta^{-1}$, to get the desired behaviour $\overline{G}(\mathbb{R}) \cong PU(2, 1)$. Then $\overline{\Gamma}$ is generated by ζ and $b = \frac{1}{7}\sum_{j=0}^{5}\sum_{k=-1}^{1}b_{jk}\zeta^{j}\sigma^{k}$ for coefficients -9, -3, 6, -4, 1, -2, 1, -2, -3, -1, -5, 3, -3, -8, 2, 2, -4, -6 in the order $b_{0,-1}, b_{0,0}, b_{0,1}, b_{1,-1}, \dots, b_{5,1}$. Mumford's original plane is contained in this class.

References

- [1] M.A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968) 299-301.
- [2] D.I. Cartwright, T. Steger, Application of the Bruhat–Tits tree of $SU_3(h)$ to some A_2 groups, J. Aust. Math. Soc. 64 (1998) 329–344.
- [3] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, in: 1958 Symposium Internacional de Topologia Algebraica, UNESCO, pp. 129–144.
- [4] M.-N. Ishida, F. Kato, The strong rigidity theorem for non-Archimedean uniformization, Tohoku Math. J. 50 (1998) 537-555.
- [5] J. Keum, A fake projective plane with an order 7 automorphism, Topology 45 (2006) 919-927.
- [6] J. Keum, Quotients of fake projective planes, Geom. Topol. 12 (2008) 2497-2515.
- [7] V.S. Kharlamov, V.M. Kulikov, On real structures on rigid surfaces, Izv. Math. 66 (2002) 133-150.
- [8] B. Klingler, Sur la rigidité de certains groupes fondamentaux, l'arithméticité des réseaux hyperboliques complexes, et les « faux plans projectifs », Invent. Math. 153 (2003) 105–143.
- [9] D. Mumford, An algebraic surface with K ample, $K^2 = 9$, $p_g = q = 0$, Amer. J. Math. 101 (1979) 233–244.
- [10] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989) 91-117.
- [11] G. Prasad, S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007) 321-370.
- [12] G. Prasad, S.-K. Yeung, Fake projective planes, Addendum, in press.
- [13] R. Rémy, Covolume des groupes S-arithmétiques et faux plans projectifs [d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung], Séminaire Bourbaki, 60ème année, 2007–2008, no. 984.
- [14] S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA 74 (1977) 1798–1799.
- [15] S.-K. Yeung, Integrality and arithmeticity of co-compact lattices corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004) 107–130.
- [16] S.-K. Yeung, Classification of fake projective planes, in: Handbook of Geometric Analysis, vol. 2, in press.