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This Note is concerned with the severely ill-posed Cauchy–Helmholtz problem. This Cauchy
problem being rephrased through an “interfacial” equation, we resort to an Aitken–Schwarz
method for solving this equation. Numerical trials highlight the efficiency of the present
method.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette Note concerne le problème mal-posé de Cauchy–Helmholtz. Ce problème est
interprété en terme d’équation d’interface qu’on résout via une méthode d’Aitken–Schwarz.
Des essais numériques illustrent l’efficacité de cette méthode.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Cette Note présente une méthode pour résoudre le problème de complétion des données pour l’équation de Helmholtz
(i.e. problème de Cauchy). Ce problème est connu pour être mal posé au sens de Hadamard. On donne un flux ϕ et une
pression f sur une partie de la frontière surdéterminée Γc d’un domaine Ω et on veut compléter les données sur l’autre
partie de la frontière inconnue Γi . On montre que le problème de Cauchy peut être reécrit en terme d’opérateur de Steklov–
Poincaré écrit sur l’interface de la partie à compléter.

Koslov et al. (KMF) [9] ont proposé une méthode itérative pour résoudre les problèmes de Cauchy, qui s’avère être un
algorithme de Richardson préconditionné pour résoudre une équation sur l’interface. Cet algorithme appliqué à l’équation
de Helmholtz diverge purement linéairement. Ceci nous a permis d’accélérer la convergence de l’algorithme par la technique
d’Aitken–Schwarz proposée dans [7].

La validation de cette méthode est testée sur l’exemple analytique u = e2ixy . Dans le but de tester la robustesse de notre
algorithme nous avons bruité les données. La Fig. 1 illustre la répartition de la pression calculée sur la frontière à compléter
pour des données bruitées et non bruitées. Le Tableau 1 illustre l’erreur de complétion pour différents niveaux de bruit
blanc.
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1. Introduction

This contribution is concerned with the recovering of both Dirichlet and Neumann data on some part of the domain
boundary, starting from the knowledge of these data on another part of the boundary for the Helmholtz equation. This
data completion question may be relevant by itself in some practical applications or maybe a preliminary step to others.
For example, the reconstruction of acoustic pressure fields inside the cavity of a vibrating object by Wu and Yu [15]. The
Cauchy problem under consideration is known to be ill-posed in so far as the existence of a solution to such a problem
requires that compatibility conditions should be insured. Furthermore, the data completion problem is highly instable. For
the theoretical issues we refer to [12] and references therein. In a classical way, one can resort to a least square type
method (misfit computation-measurement) in solving such an inverse problem. Notice that, regarding the ill-posedness of
the problem under consideration, this method should be associated to some regularizing one [3]. However, our approach, in
this Note, is different, it can be linked to [9].

Koslov et al. (KMF) [9] proposed an alternating iterative method for solving Cauchy problems which turns out to be
a Richardson preconditioned algorithm for solving an interface equation, see [1], and references therein applied to the
Helmholtz equation. The KMF’s algorithm, in its initial formulation does not converge, indeed, it diverges linearly. In a
recent theoretical paper, Johansson and Kozlov [8] proposed a KMF [9] modified alternating procedure for solving Cauchy
problems for self-adjoint non-coercive elliptic operators. Our approach, in this Note, is quite different: since the KMF’s
algorithm applied to Helmholtz equation diverges linearly, we apply the Aitken-like acceleration process.

The continuous problem of the data completion for the Helmholtz operator is formulated as follows:
Let Ω be a bounded domain in R

2 or R
3. The boundary Γ = ∂Ω , assumed smooth, is split into Γc and Γi having both

non-vanishing measure, whose outer normal direction is denoted by n. Given a flux ϕ and the data f on the overdetermined
boundary Γc , recovering the data on the remainder (incomplete) part Γi of the boundary is accomplished by solving the
Cauchy system that may be put under the following mathematical setting: find u such that⎧⎨

⎩
�u + k2u = g in Ω,

∂nu = ϕ on Γc,

u = f on Γc .

(1)

This Note is outlined as follows: In the opening section, the Cauchy–Helmholtz problem is rephrased in terms of an
interfacial problem using the Steklov–Poincaré operator, the Aitken–Schwarz acceleration process is described. Section 3 is
devoted to the numerical illustration. The closing section is devoted to some comments.

2. Data completion process

We have a double condition on Γc , let λ be an auxiliary field defined on Γi , we introduce two well-defined boundary
value problems having a Dirichlet data on Γi equal to λ. For the remaining part of the boundary Γc , we can combine
different choices for boundary conditions (Dirichlet, Neumann or Robin). We impose the Robin type boundary condition on
Γc because it is necessary to insure the well-posedness of the near field Helmholtz problem. We consider therefore the two
following Helmholtz problems:

Find v(λ,ϕ + iqf ) and w(λ,ϕ + iq′ f ) solutions of⎧⎨
⎩

�v(λ) + k2 v(λ) = g in Ω,

∂n v(λ) + iqv(λ) = ϕ + iqf on Γc,

v(λ) = λ on Γi,

⎧⎨
⎩

�w(λ) + k2 w(λ) = g in Ω,

∂n w(λ) + iq′w(λ) = ϕ + iq′ f on Γc,

w(λ) = λ on Γi .

(2)

Here q and q′ are a real constant (|q| �= |q′|).

Remark. We selected these mixed-value problems with Robin condition on Γc to insure the existence and uniqueness of
the forward problem and to avoid resonant frequencies.

Solving the Cauchy system (1) is achieved when the data extension λ makes v and w coincide, and the solution is then
u = v = w . This leads to write an equation on Γi to be satisfied by λ:

∂v(λ,ϕ + iqf )

∂n
= ∂ w(λ,ϕ + iq′ f )

∂n
. (3)

One poses v(λ,ϕ + iqf ) = v(λ,0) + v(0,ϕ + iqf ) = v0(λ) + v∗ and w(λ,ϕ + iq′ f ) = w(λ,0) + w(,ϕ + iq′ f ) = w0(λ) +
w∗ .v0 and w0 are the Helmholtz-free extensions of λ from Γi into Ω , noted respectively H v(λ) and H w(λ). Whereas v∗
and w∗ are two Helmholtz-free extensions of (ϕ + iqf ) and (ϕ + iq′ f ) from Γi into Ω , noted respectively R v (ϕ + iqf ) and
R w(ϕ + iq′ f ).

The latter condition amounts to the requirement that λ satisfies the Steklov–Poincaré type equation

Sλ = χ on Γi (4)
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where

χ := −∂n R v(ϕ + iqf ) + ∂n R w(ϕ + iq′ f )

and S is the Helmholtz–Cauchy–Steklov–Poincaré operator formally defined by

Sλ := S v − S w = ∂n H v(λ) − ∂n H w(λ).

As pointed out in [1], the algorithms of Richardson

λn+1 = λn + (
Sλn − χ

)
(5)

and of KMF (Richardson preconditioned with S−) failed to converge. Notice that the KMF’s algorithm is very long to converge
in the elliptic framework and it is no more convergent for the Helmholtz case.

2.1. The Aitken–Cauchy algorithm

The aim of this Note is to “force” the convergence of the KMF algorithm in the Helmholtz case resorting to an Aitken-like
acceleration procedure introduced in [6,7] for the Domain Decomposition method with Dirichlet–Dirichlet “or Dirichlet–
Neumann” boundary condition.

The KMF’s algorithm search for λ∞ reads as solving the interface equation:

λn+1 = λn + S−1−
(

Sλn − χ
) = S−1−

(
S+λn − χ

)
. (6)

The main observation to build the Aitken–Schwarz methodology is to remark that the convergence of the error and the
normal derivative of the error at the artificial interface behaves linearly:(

λn+1 − λ∞) = (
I + S−1− S

)(
λn − λ∞) = S−1− S+

(
λn − λ∞)

, (7)

S−
(
λn+1 − λ∞) = S+ S−1−

(
S−

(
λn+1 − λ∞))

. (8)

The Aitken–Schwarz methodology [6,7,5,14,4] consists on building a cheap approximation of the operator

P =
(

S−1− S+ 0
0 S+S−1−

)
=

(
P1 0
0 P2

)

based only on the interface solution and derivative solution iterates unlike to the approach of [11] where an a priori
knowledge of the operator is needed.

Let be μ = (λ, S−λ)t . Assume that the sequence (μn)n∈N converges linearly toward μ∞ ∈ K N , K = {R,C} in the meaning
of Eqs. (7), (8) with a constant full rank error operator P independent of n. Assume that there is a norm ‖.‖ such that
‖P‖ < 1. Then P and μ∞ can be determined from several iterates using the equations(

μN+1 − μN , . . . , μ2 − μ1) = P
(
μN − μN−1, . . . , μ1 − μ0). (9)

If Id − P is non-singular (‖P‖ < 1 for example), then μ∞ can be deduced as

μ∞ = (Id − P )−1(μm+1 − Pμm)
, ∀m � 1. (10)

The construction of P requires at least N + 1 iterates if the error components are linked together. The nature of the conver-
gence does not change if we consider the error coefficients en = μn − μ∞ in an orthogonal basis Φ (named “Fourier basis”
with the property to have a decreasing of coefficients in this basis) instead of the original basis (named physical space).
Then we can write an equivalent equation rather than Eqs. (7), (8). Let us consider β̂n

Γi
the components of the traces of

En = μn+1 − μn in the “Fourier” basis Φ . Then one can write:

β̂n
Γi

= P [[.,.]]β̂n+1
Γi

. (11)

This matrix P [[.,.]] has the same size as the matrix P . Nevertheless, we have more flexibility to define some consistent
approximation of this matrix, since we have access to a posteriori estimate based on the module value of the Fourier
coefficients. We derive then the adaptive Aitken–Schwarz algorithm as follows [4]:

Algorithm 2.1.

(i) Perform q iterations of the KFM (Schwarz) algorithm.
(ii) Write the difference between two successive iterates in the Φ basis and select the component modes higher than a fixed tolerance

or fixed relative tolerance with respect to the highest mode if the Schwarz diverges.
(iii) Take the subset μ̃ of m Fourier modes from 1 to min(q,max(Index)).
(iv) Compute the m × m P∗[[.,.]] matrix which columns are associated to the m modes selected which is an approximation of P [[.,.]] .
(v) Accelerate the m modes with the Aitken formula: μ̃∞ = (Id − P∗[[.,.]])−1(μ̃n+1 − P∗[[.,.]]μ̃n).

(vi) Recompose the solution with the m modes accelerated and with the N − m other modes if the Schwarz converges else put them
to 0.
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Fig. 1. Reconstruction on the internal boundary of a tube, comparison between exact and Aitken–Kozlov solution of the acoustic pressure computed with
no noise: real part (left top), imaginary part (right top) and the real part with 5% noise where P∗[[.,.]] is build with no noisy data (left bottom) and with
noisy data (right bottom).

3. Numerical illustration

To conduct the numerical trials we use the Finite Element MELINA code [10] for solving the forward problems (tech-
niques developed in [2] could also be used for performance considerations) and Matlab for the acceleration process. Ω is
considered as a thick annular domain with radii r1 = 1 defining Γi and r2 = 1.5 defining Γc . The searched data is the har-
monic function u = ei2xy . The overdetermined boundary conditions on Γc are f = u and ϕ = ∂nu. The boundary conditions
on Γi have to be rebuilt by the Aitken–KMF’s process. The meshes we use are triangular, the finite elements are linear. The
calculations are run on a uniform mesh with 200 nodes on Γi , 300 nodes on Γc and 5173 nodes on Ω . It is noted that the
relaxed KMF’s algorithm (λn+1 = (1− r)λn + r S−1− (Sλn −χ) with r = 0.4) exhibits a linear divergence. The Fourier coefficient
q (respectively q′) defined in (2) is fixed to 1 (respectively 5).

Fig. 1 gives the accuracy result between the exact solution and the solution obtained by the Aitken acceleration, based
on the divergent solutions of the relaxed KMF’s algorithm. We proceed as described in Algorithm 2.1 for the first 40 Fourier
positive and negative modes (of the solution and normal derivative) with computing a P [[.,.]] matrix separately for each
set. To emphasize the reliability of this algorithm and to attest the stabilizing effect, we performed a reconstruction of the
solution from some noisy data. We computed also P [[.,.]] matrices based on noisy and non-noisy data.

Table 1 illustrates the convergence speed and the accuracy of this algorithm for polluted Dirichlet data with different
white noise levels 2.5%, 5%, 10%. It shows that the relative error behaves linearly with respect to the noise level and still
reasonable with an error near the value of the noise.

From the theoretical view point, the interface operator P does not depend on the loading. It depends only on the
geometry. However, at the discrete level, one has do take into account the errors of discretization, approximation as well as
to add the errors on the resolution of the local problems.
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Table 1
Accuracy on the computational domain of the Aitken–Kozlov solution associated to polluted Dirichlet data with different noise levels of an exact solution.

Noise level P built with no noisy data P built with noisy data
‖uex−ucal‖L2 (Ω)

‖uex‖L2 (Ω)

‖uex−ucal‖L∞ (Ω)

‖uex‖L∞ (Ω)

‖uex−ucal‖L2 (Ω)

‖uex‖L2 (Ω)

‖uex−ucal‖L∞ (Ω)

‖uex‖L∞ (Ω)

2.5% 2.8 × 10−2 1.29 × 10−1 1.5 × 10−2 3.2 × 10−2

5% 5.6 × 10−2 2.42 × 10−1 2.27 × 10−2 7.64 × 10−2

10% 11.25 × 10−2 4.5 × 10−1 4.67 × 10−2 1.59 × 10−1

4. Conclusions

This Note deals with a method to solve the Cauchy problem for the Helmholtz equation. The KMF’s algorithm is known to
diverge in this problem. Nevertheless, the pure linear divergence allows to apply the Aitken acceleration of the convergence
process to get the converged solution. The building of the matrix of acceleration takes advantages of the decomposition
of the trace solution on the boundary where data are missing, in an orthogonal basis for which the values of components
decrease with the number of mode, in order to have a cheap approximation of linear operator of the error at artificial
interface. This operator is linked to the Dirichlet–Neumann mapping, but no direct information on the operator is used to
build an approximation of it.

Up to our knowledge there are very few effective results for reconstruction problem for Helmholtz equation except for
the case where the data are lacking on a flat boundary [13]. Presently further numerical experiments are going on as well
as some practical applications such as the interfacial crack identification problem.
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