
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 111–114
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Mathematical Problems in Mechanics

Theoretical analysis for the deflection of granular jets

Analyse théorique de la déflection de jets granulaires

Yu Hui Deng, Jonathan J. Wylie, Qiang Zhang

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2009
Accepted 13 November 2009
Available online 23 December 2009

Presented by Philippe G. Ciarlet

We consider a dilute granular jet colliding with an oblique planar wall. Collisions between
particles and collisions between particles and the wall are inelastic. We derive an exact
solution for the mean force experienced by the wall for dilute jets. We show that the mean
force on the wall can be a non-monotonic function of the angle between the wall and the
jet. This occurs because particles that rebound from the wall can collide with incoming
particles and be scattered.
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r é s u m é

On considere un jet granulaire dilué qui entre en collision avec un mur plan oblique. Les
collisions entre particules ainsi que les collisions mur-particules sont inélastiques. Nous
obtenons une solution exacte pour la force moyenne supportée par le mur pour les jets
dilués. Nous montrons que la force moyenne peut être une fonction non monotone de
l’angle entre la paroi et le jet du fait de la diffusion des particules qui, après avoir rebondi
sur le mur, s’entrechoquent avec les particules entrantes.

© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In this Note we consider the mechanisms that underlie the process of deflection when a granular jet collides with a
rigid wall. By a granular jet, we mean a localized stream of discrete particles moving with the same velocity. The collisions
between particles and the collisions between particles and the wall are inelastic. We will show that this seemingly simple
system can give rise to an array of surprising dynamics.

Hákonardóttir and Hogg [2] considered the interaction of granular flows with deflecting dams. They performed experi-
mental studies and developed a theoretical framework to describe free-surface flows. In bidisperse particle systems, the case
of shocks induced by a moving boundary was considered by Wylie et al. [4]. Wylie and Zhang [3] showed that phase-locking
and complicated orbits collapse occur for dissipative particle systems that are driven by forcing from a boundary. Wylie et
al. [6] and Wylie et al. [5] studied the motion of a large number of particles in a closed box that are excited by a vibrating
boundary and experience a linear drag force from the interstitial fluid. In this Note, we will focus on the effective force
experienced by the rigid boundary and show that a number of surprising phenomena can occur.
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Fig. 1. Schematic (Schéma).

2. Formulation

We consider a system in which a dilute granular jet originating from infinity collides with an oblique planar wall of
infinite length (see Fig. 1). We assume that the jet consists of identical smooth spheres of radius a and mass m. We further
assume that all incoming particles have the same velocity v0. The angle between the wall and the direction of the jet is θ .
We will consider a 2-dimensional system, but the methodology explained in this Note can be extended to 3-dimensions in
a straightforward way. We define axes with the Y -axis parallel to the jet, and the Z -axis perpendicular to the jet.

Collisions between particles are inelastic with a constant restitution coefficient 0 � e � 1, which is defined as the ratio
of the relative velocities of two particles in the direction along their line of centers immediately after and immediately
before the particle–particle collision. The coefficient of restitution is assumed to be independent of velocity and denotes the
degree of dissipation in particle collisions. Similarly, the collisions between particles and the wall are characterized by the
restitution coefficient 0 � ew � 1.

The particles in the jet are randomly located, and in general, the spatial distributions of particles in the directions parallel
and perpendicular to the jet will be different. Without loss of generality, we choose the coordinate system such that the
mean Z -location of particles is zero. We denote the marginal density function of the Z -location of particles as ρZ and
the standard deviation of ρZ as σZ . We denote the marginal density function of the distance in the Y -direction between
adjacent particles as ρY and the mean of ρY as μY . We note that for dense jets in which μY � a there will be strong
dependence between the locations of particles since that two particles cannot occupy the same location. However, for the
relatively dilute jets which we will consider in this Note, the dependence will be weak. Here we choose ρZ to be a Gaussian
distribution with standard deviation σZ . For simplicity, we choose ρY to be non-random, that is all particles are spaced μY

apart in the Y -direction, and we also neglect gravity.
The system can be described by the following parameters: the deflector angle θ , the restitution coefficients e and ew ,

the two distributions ρY and ρZ , and two dimensionless parameters V = μY
a and S = σZ

a which measure the particle
denseness in Y -direction and Z -direction respectively. We denote the effective mean force experienced by the oblique wall
as Fmean . That is, Fmean is defined as the average impulse experienced by the wall per unit time. Then the dimensionless
force fmean = Fmean

mv2
0/μY

represents the average dimensionless impulse on the wall per particle in the jet.

3. Theoretical approach and results

For sufficiently dilute jets, most particles experience either zero or one particle–particle collision. Then the second and
higher order collisions have negligible contributions to fmean . In order to investigate the first effects of collisions between
particles, we assume that each particle can only experience one collision with another particle. After this particle–particle
collision, one or both of the two particles can hit the wall again, but we will neglect further particle–particle collisions.
Because of the randomness in the positions of the two particles in the jet, there are two possible outcomes. The first
possibility is that both particles collide with the wall and propagate to infinity without any particle–particle collision. The
second possibility is that a particle can collide with another one after it rebounds from the wall, after which one or both of
the particles may hit the wall again only once and propagate to infinity.

Next we analyze the probability that a given particle experiences a particle–particle collision, and hence derive an ex-
pression for fmean . We denote the n-th particle by Bn , and define the following events:

Cn, j = {Bn collides with B j}, Dn = {Bn collides with any of the previous particles} for all n, j ∈ Z.

According to our assumption, Bn may collide with at most one of the particles {B0, B1, . . . , Bn−1, Bn+1, Bn+2, . . .} before
propagating to infinity without experiencing further collisions. That is Cn,n = ∅ and Cn, j ∩Cn,k = ∅ (∀ j �= k). Here we consider
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the simple case where Bn may only collide with its nearest neighbors Bn−1 or Bn+1. That is, Cn,n− j = ∅ (2 � j � n, ∀n, j ∈ Z).
In this case, we have P(Dn) = P(

⋃n−1
j=0 Cn, j) = P(Cn,n−1). Note that we assume that each particle can experience at most one

particle–particle collision and hence Bn may collide with Bn−1 if and only if Bn−1 does not collide with the previous particle
Bn−2. Thus we can write the probability of Dn as follows,

P(Dn) = P(Cn,n−1) = P(Cn,n−1|Dn−1) · P(Dn−1) = P(Cn,n−1|Dn−1) · (1 − P(Dn−1)
)
, (1)

where overbar denotes complement. Let p denote the probability for a single particle to collide with previous particles.
When a steady state has been achieved, there will be of no difference between the states of Bn and the states of other
particles, and hence letting n → +∞ in (1), we can obtain p = limn→+∞ P(Dn) = pτ

1+pτ
where pτ = P(Cn,n−1|Dn−1) (∀n ∈ Z).

In principle, we can follow this procedure to include more particle–particle collisions in calculating the probability that a
given particle experiences a particle–particle collision. We have shown that including interactions with more particles just
gives small corrections to the formula p = pτ

1+pτ
for a dilute system [1]. So for simplicity we choose p = pτ

1+pτ
as the

approximate probability for a single particle to collide with previous particles in the system.
The force experienced by the oblique wall consists of two components. One, denoted by F w , is the impact caused by the

direct particle–wall collision without any collision with previous particles. The other, denoted by Fcw , is the impact caused
by the particle–wall collision after the particle–particle collision. For example, Bn can directly hit the wall if and only if it
does not collide with the previous particle Bn−1, or Bn can hit the wall after the particle–particle collision with Bn−1 only
if Bn−1 does not hit its previous particle Bn−2. Therefore we can write the total average impulse on the wall Fmean as

Fmean = E(F w) + E(Fcw) = E(F w |Dn )
(
1 − P(Dn)

) + E(Fcw |Dn−1 )
(
1 − P(Dn−1)

)
. (2)

For a steady state and n → +∞, we obtain,

Fmean = (1 − p)
(

lim
n→+∞E(F w |Dn ) + lim

n→+∞ E(Fcw |Dn−1)
)

= 1

1 + pτ

(
Fb +

∫ ∫
A

F pρ(z1, z2)dz1 dz2

)
(3)

where Fb denotes the impact on the wall caused by a single particle to which the first collision is with the wall, and F p

denotes the impact on the wall after the particle collides with the previous neighbor when the neighbor particle itself
does not experience a collision. ρ(z1, z2) is the joint distribution density of z1 and z2 which denote the initial heights of
two particles, and A = {(z1, z2) ∈ R

2 | C2,1}. Using (3), a straightforward calculation [1] gives the analytical formula for the
dimensionless mean force fmean as

fmean = (1 + ew) sin θ

4 + 2 erf(C−) − 4 erf(C+)
·
{

4 + (
(1 + e) − ew(1 − e)

)(
erf(D−) − erf(D+)

) + (
(1 − e)

− ew(1 + e)
)[

erf(C−) − erf(C+) + H(ω)
(
erf(K+) − erf(K−)

)] + (1 + e)(1 + ew)

×
[(

S2 sin2 θ

2
+ V 2 cos2 θ

4

)(
erf(C−) − erf(C+) + erf(D+) − erf(D−) + H(ω)

(
erf(K+) − erf(K−)

))

+ V S sin θ cos θ√
π

(
e−C2+ − e−C2− + e−D2− − e−D2+ + H(ω)

(
e−K 2− − e−K 2+

))

+ S2 sin2 θ√
π

(
C+e−C2+ − C−e−C2− + D−e−D2− − D+e−D2+ + H(ω)

(
K−e−K 2− − K+e−K 2+

))]}
(4)

where erf(x) and H(x) are Error function and Heaviside function respectively, and

ω = ew − 1 − e

1 + e
, C± = ∓1 − V cos θ

2

S sin θ
, D± =

∓
√

(1+e)−ew (1−e)
(1+e)(1+ew )

− V cos θ
2

S sin θ
,

K± =
∓

√
ew (1+e)−(1−e)
(1+e)(1+ew )

− V cos θ
2

S sin θ
.

One may naively imagine that larger θ implies a larger velocity component perpendicular to the wall, and hence larger
force. We refer to this as a geometric effect. However, one can readily show that fmean can be a non-monotonic function
of θ . This occurs because particles that rebound from the wall can collide with incoming particles and be scattered. We
refer to this as a shielding effect. Our theory allows us to quantify theses two effects, and it is the competition between
them determines the behavior of fmean [1].
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