
Mihai Putinar

Mathematics Department, University of California, Santa Barbara, CA 93106, USA

Article Info

Available online 22 December 2009

The main result and its corollary need an additional hypothesis, as follows:

Theorem 1. Let Q be a countably generated Archimedean quadratic module contained in the algebra $A = \mathbb{R}[x_1, \ldots, x_d, h_1, \ldots, h_m]$ spanned by the coordinate functions and by Borel measurable functions h_1, \ldots, h_m on \mathbb{R}^d. Assume that Q has the moment property, that is, every linear functional on A which is non-negative on Q is representable by a positive measure. If a function $f \in A$ is positive on $P(Q)$, then $f \in Q$.

Similarly,

Corollary 2. Let q_1, \ldots, q_n be elements of the algebra $A = \mathbb{R}[x_1, \ldots, x_d, h_1, \ldots, h_m]$ generated by the coordinate functions and by Borel measurable functions h_1, \ldots, h_m on \mathbb{R}^d. Let ΣA^2 denote the convex cone of sums of squares, and consider the Borel measurable set

$$P(q_0, q_1, \ldots, q_n) = \{x \in \mathbb{R}^d; q_i(x) \geq 0, \ 0 \leq i \leq n\},$$

where $q_0(x) = 1 - (x_1^2 + \cdots + x_d^2 + h_1^2 + \cdots + h_m^2)$.

If a function $f \in A$ is positive on $P(q_0, q_1, \ldots, q_n)$, then $f \in Q$, provided that the quadratic module $Q = \Sigma A^2 + q_0 \Sigma A^2 + \cdots + q_n \Sigma A^2$ possesses the moment property.

In its turn, the moment property of the cone Q can be restated as a density of Q in the set of all elements of A which are non-negative on $P(Q)$, in the strongest locally convex topology carried by A.

DOI of original article: 10.1016/j.crma.2009.02.010.
E-mail address: mputinar@math.ucsb.edu.
URL: http://www.math.ucsb.edu/~mputinar.