Reflected backward doubly stochastic differential equations driven by a Lévy process ${ }^{\star *}$

Équations différentielles doublement stochastiques rétrogrades réfléchies gouvernées par un processus de Lévy

Yong Ren
Department of Mathematics, Anhui Normal University, Wuhu 241000, China

ARTICLE INFO

Article history:

Received 24 September 2009
Accepted after revision 5 November 2009
Presented by Marc Yor

Abstract

We prove the existence and uniqueness of a solution for reflected backward doubly stochastic differential equations (RBDSDEs) driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg), via Snell envelope and the fixed point theorem. © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É On démontre l'existence et l'unicité de la solution d'équations différentielles doublement stochastiques rétrogrades réfléchies (RBDSDE) gouvernées par des martingales de Teugels associées à un processus de Lévy dans lequel le processus obstacle est continu à droite et possède une limite à gauche (càdlàg), via l'enveloppe de Snell et un théorème de point fixe. © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les résultats les plus importants de cette Note sont les deux théorèmes suivants :

Théorème 1. Si les fonctions f et g ne dépendent pas de (Y, Z), c'est-à-dire $f(\omega, t, y, z)=f(\omega, t), g(\omega, t, y, z)=g(\omega, t)$, si (H1) est satisfaite, si les fontions f, g vérifient $f \in \mathcal{H}^{2}, g \in \mathcal{H}^{2}$ et si $(\mathrm{H} 4)$ est satisfaite, alors il existe un triplet $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$ solution de l'équation RBDSDE (1) correspondant aux données (ξ, f, g, S).

Théorème 2. On suppose les hypothèses $(\mathrm{H} 1)-(\mathrm{H} 4)$ satisfaites, alors pour les données (ξ, f, g, S) l'équation RBDSDE (1) a une solution unique, $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$.

[^0]
1. Introduction

Very recently, Bahlali et al. [1] proved the existence and uniqueness of a solution to the following reflected backward doubly stochastic differential equations (RBDSDEs) with one continuous barrier and uniformly Lipschitz coefficients:

$$
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) \mathrm{d} s+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) \mathrm{d} B_{s}+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}^{(i)}, \quad 0 \leqslant t \leqslant T
$$

where the $\mathrm{d} W$ is a forward Itô integral and the $\mathrm{d} B$ is a backward Itô integral.
Motivated by [1-3,5-8], in this Note, we mainly consider the following RBDSDEs driven by Teugels martingales associated with a Lévy process, in which the obstacle process is right continuous with left limits (càdlàg):

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s-}, Z_{s}\right) \mathrm{d} s+\int_{t}^{T} g\left(s, Y_{s-}, Z_{s}\right) \mathrm{d} B_{s}+K_{T}-K_{t}-\sum_{i=1}^{\infty} \int_{t}^{T} Z_{s}^{(i)} \mathrm{d} H_{s}^{(i)}, \quad 0 \leqslant t \leqslant T \tag{1}
\end{equation*}
$$

where the $\mathrm{d} H^{(i)}$ is a forward semi-martingale Itô integrals [4] and the $\mathrm{d} B$ is a backward Itô integral.
The Note is devoted to prove the existence and uniqueness of a solution for RBDSDEs driven by a Lévy process. We hope to give the probabilistic interpretation of solutions for the obstacle problem for stochastic partial-differential equations in our further study by RBDSDEs proposed in this Note.

The Note is organized as follows. In Section 2, we give some preliminaries and notations. Section 3 is to prove the main results.

2. Preliminaries and notations

Let $\left(\Omega, \mathcal{F}, P, \mathcal{F}_{t}, B_{t}, L_{t}: t \in[0, T]\right)$ be a complete Brownian-Lévy space in $\mathbb{R} \times \mathbb{R} \backslash\{0\}$, with Lévy measure ν, i.e. ($\left.\Omega, \mathcal{F}, P\right)$ is a complete probability space, $\left\{B_{t}: t \in[0, T]\right\}$ is a standard Brownian motion in \mathbb{R} and $\left\{L_{t}: t \in[0, T]\right\}$ is a \mathbb{R}-valued pure jump Lévy process of the form $L_{t}=b t+l_{t}$ independent of $\left\{B_{t}: t \in[0, T]\right\}$, which corresponds to a standard Lévy measure ν satisfying the following conditions:
(1) $\int_{\mathbb{R}}\left(1 \wedge y^{2}\right) \nu(\mathrm{d} y)<\infty$;
(2) $\int_{]-\varepsilon, \varepsilon \varepsilon^{[}} e^{\lambda|y|} \nu(\mathrm{d} y)<\infty$, for every $\varepsilon>0$ and for some $\lambda>0$.

For each $t \in[0, T]$, we define the σ-field \mathcal{F}_{t} by $\mathcal{F}_{0, t}^{L}$ and $\mathcal{F}_{t, T}^{B}$

$$
\mathcal{F}_{t} \triangleq \mathcal{F}_{t, T}^{B} \vee \mathcal{F}_{0, t}^{L}
$$

where for any process $\left\{\eta_{t}\right\}, \mathcal{F}_{s, t}^{\eta}=\sigma\left\{\eta_{r}-\eta_{s}: s \leqslant r \leqslant t\right\} \vee \mathcal{N}$ and \mathcal{N} is the class of P-null sets of \mathcal{F}. Note that $\left\{\mathcal{F}_{t}, t \in[0, T]\right\}$ is neither increasing nor decreasing, so it does not constitute a filtration.

Let us introduce some spaces:

- $\mathcal{H}^{2}=\left\{\left(\varphi_{t}\right)_{0 \leqslant t \leqslant T}\right.$: an \mathcal{F}_{t}-progressively measurable, real-valued process such that $\left.E \int_{0}^{T}\left|\varphi_{t}\right|^{2} \mathrm{~d} t<\infty\right\}$ and denote by \mathcal{P}^{2} the subspace of \mathcal{H}^{2} formed by the predictable processes;
- $\mathcal{S}^{2}=\left\{\left(\varphi_{t}\right)_{0 \leqslant t \leqslant T}\right.$: an \mathcal{F}_{t}-progressively measurable, real-valued, càdlàg process such that $\left.E\left(\sup _{0 \leqslant t \leqslant T}|\varphi(t)|^{2}\right)<\infty\right\}$;
- $l^{2}=\left\{\left(x_{i}\right)_{i \geqslant 1}\right.$: a real-valued sequence such that $\left.\sum_{i=1}^{\infty} x_{i}^{2}<\infty\right\}$;
- $A^{2}=\left\{\left(K_{t}\right)_{0 \leqslant t \leqslant T}\right.$: an \mathcal{F}_{t}-adapted, continuous, increasing process such that $\left.K_{0}=0, E\left|K_{T}\right|^{2}<\infty\right\}$.

We shall denote by $\mathcal{H}^{2}\left(l^{2}\right)$ and $\mathcal{P}^{2}\left(l^{2}\right)$ the corresponding spaces of l^{2}-valued process equipped with the norm $\|\varphi\|^{2}=$ $\sum_{i=1}^{\infty} E \int_{0}^{T}\left|\varphi_{t}^{(i)}\right|^{2} \mathrm{~d} t$.

We denote by $\left(H^{(i)}\right)_{i \geqslant 1}$ the Teugels martingales associated with the Lévy process $\left\{L_{t}: t \in[0, T]\right\}$. More precisely

$$
H_{t}^{(i)}=c_{i, i} Y_{t}^{(i)}+c_{i, i-1} Y_{t}^{(i-1)}+\cdots+c_{i, 1} Y_{t}^{(1)}
$$

where $Y_{t}^{(i)}=L_{t}^{(i)}-E\left[L_{t}^{(i)}\right]=L_{t}^{(i)}-t E\left[L_{1}^{(i)}\right]$ for all $i \geqslant 1$ and $L_{t}^{(i)}$ are power-jump processes. That is, $L_{t}^{(1)}=L_{t}$ and $L_{t}^{(i)}=$ $\sum_{0<s \leqslant t}\left(\Delta L_{t}\right)^{i}$ for $i \geqslant 2$. For more details on Teugels martingales, one can see Nualart and Schoutens [6].

We consider the following assumptions:
(H1) The terminal value $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$.
(H2) The coefficients $f:[0, T] \times \Omega \times \mathbb{R} \times l^{2} \rightarrow \mathbb{R}$ and $g:[0, T] \times \Omega \times \mathbb{R} \times l^{2} \rightarrow \mathbb{R}$ are progressively measurable, such that $f(\cdot, 0,0) \in \mathcal{H}^{2}, g(\cdot, 0,0) \in \mathcal{H}^{2}$.
(H3) There exists some constants $C>0$ and $0<\alpha<1$ such that for every $(\omega, t) \in \Omega \times[0, T],\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right) \in \mathbb{R} \times l^{2}$ $\left|f\left(t, y_{1}, z_{1}\right)-f\left(t, y_{2}, z_{2}\right)\right|^{2} \leqslant C\left(\left|y_{1}-y_{2}\right|^{2}+\left\|z_{1}-z_{2}\right\|^{2}\right), \quad P$-a.s., $\left|g\left(t, y_{1}, z_{1}\right)-g\left(t, y_{2}, z_{2}\right)\right|^{2} \leqslant C\left|y_{1}-y_{2}\right|^{2}+\alpha\left\|z_{1}-z_{2}\right\|^{2}, \quad P$-a.s.
(H4) The obstacle process $\left(S_{t}\right)_{0 \leqslant t \leqslant T}$, which is an \mathcal{F}_{t}-progressively measurable, real-valued, càdlàg process satisfying that $S_{T} \leqslant \xi$ a.s. and

$$
E\left[\sup _{0 \leqslant t \leqslant T}\left(S_{t}^{+}\right)^{2}\right]<+\infty ; \quad \text { where } S_{t}^{+}=\max \left\{S_{t}, 0\right\}
$$

Moreover, we assume that its jumping times are inaccessible stopping times [4].
Definition 1. A solution of Eq. (1) is a triple $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$ with values in $\mathbb{R} \times l^{2} \times \mathbb{R}$ associated with $(\xi, f, g$, S) and satisfies that

$$
\begin{cases}\text { (i) } & \left(Y_{t}, Z_{t}\right)_{0 \leqslant t \leqslant T} \in \mathcal{S}^{2} \times \mathcal{P}^{2}\left(l^{2}\right) \quad \text { and }\left(K_{t}\right)_{0 \leqslant t \leqslant T} \in A^{2} \\ \text { (ii) } & Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s-}, Z_{s}\right) \mathrm{d} s+\int_{t}^{T} g\left(s, Y_{s-}, Z_{s}\right) \mathrm{d} B_{s}+K_{T}-K_{t}-\sum_{i=1}^{\infty} \int_{t}^{T} Z_{s}^{(i)} \mathrm{d} H_{s}^{(i)}, \quad 0 \leqslant t \leqslant T, \text { a.s.; } \tag{2}\\ \text { (iii) for all } 0 \leqslant t \leqslant T, Y_{t} \geqslant S_{t}, \text { a.s.; } \\ \text { (iv) } \int_{0}^{T}\left(Y_{t-}-S_{t-}\right) \mathrm{d} K_{t}=0, \text { a.s. }\end{cases}
$$

3. The main results

Firstly, we consider the special case that is the function f and g do not depend on (Y, Z), i.e. $f(\omega, t, y, z) \equiv f(\omega, t)$, $g(\omega, t, y, z) \equiv g(\omega, t)$, for all $(t, y, z) \in[0, T] \times \mathbb{R} \times l^{2}$ via Snell envelope.

Theorem 2. Assume that (H1), $f \in \mathcal{H}^{2}, g \in \mathcal{H}^{2}$ and (H4) hold. Then, there exists a triple $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$ solution of the RBDSDEs (1) associated with (ξ, f, g, S).

Proof. We set the filtration $\left\{g_{t}, t \in[0, T]\right\}$ by

$$
\begin{equation*}
\mathcal{g}_{t}=\mathcal{F}_{0, t}^{L} \vee \mathcal{F}_{0, T}^{B} \tag{3}
\end{equation*}
$$

For $f \in \mathcal{H}^{2}, g \in \mathcal{H}^{2}, \xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$, let $\eta=\left\{\eta_{t}\right\}_{0 \leqslant t \leqslant T}$ be the process defined as follows:

$$
\begin{equation*}
\eta_{t}=\xi 1_{\{t=T\}}+S_{t} 1_{\{t<T\}}+\int_{0}^{t} f(s) \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} B_{s} \tag{4}
\end{equation*}
$$

then when $t<T, \eta$ is a càdlàg, g_{t}-adapted process which has the same jump times as S. Moreover,

$$
\begin{equation*}
\sup _{0 \leqslant t \leqslant T}\left|\eta_{t}\right| \in L^{2}(\Omega) \tag{5}
\end{equation*}
$$

So, the Snell envelope of η is the smallest càdlàg supermartingale which dominates the process η and it is given by:

$$
\begin{equation*}
\mathcal{S}_{t}(\eta)=\operatorname{esssup}_{v \in \mathcal{T}} E\left[\eta_{v} \mid g_{t}\right] \tag{6}
\end{equation*}
$$

where \mathcal{T} is the set of all g_{t}-stopping time such that $0 \leqslant \tau \leqslant T$.
Due to (4), we have

$$
\begin{equation*}
E\left[\sup _{0 \leqslant t \leqslant T}\left|\mathcal{S}_{t}(\eta)\right|^{2}\right]<+\infty \tag{7}
\end{equation*}
$$

and then $\left\{\mathcal{S}_{t}(\eta)\right\}_{0 \leqslant t \leqslant T}$ is of class [D]. Hence, it has the following Doob-Meyer decomposition:

$$
\begin{equation*}
\mathcal{S}_{t}(\eta)=E\left[\xi+\int_{0}^{T} f(s) \mathrm{d} s+\int_{0}^{T} g(s) \mathrm{d} B_{s}+K_{T} \mid q_{t}\right]-K_{t} \tag{8}
\end{equation*}
$$

where $\left\{K_{t}\right\}_{0 \leqslant t \leqslant T}$ is a g_{t}-adapted càdlàg, non-decreasing process such that $K_{0}=0$. From [2], we have $E\left[K_{T}\right]^{2}<+\infty$. It follows that

$$
\begin{equation*}
E\left[\sup _{0 \leqslant t \leqslant T}\left|E\left(\xi+\int_{0}^{T} f(s) \mathrm{d} s+\int_{0}^{T} g(s) \mathrm{d} B_{s}+K_{T} \mid g_{t}\right)\right|^{2}\right]<+\infty \tag{9}
\end{equation*}
$$

Predictable representation property [6] yields that there exists $Z \in \mathcal{P}^{2}\left(l^{2}\right)$ such that

$$
\begin{align*}
M_{t} & \triangleq E\left[\xi+\int_{0}^{T} f(s) \mathrm{d} s+\int_{0}^{T} g(s) \mathrm{d} B_{s}+K_{T} \mid g_{t}\right] \\
& =E\left[\xi+\int_{0}^{T} f(s) \mathrm{d} s+\int_{0}^{T} g(s) \mathrm{d} B_{s}+K_{T}\right]+\sum_{i=1}^{\infty} \int_{0}^{t} Z_{s}^{(i)} \mathrm{d} H_{s}^{(i)} \tag{10}
\end{align*}
$$

From the property of Lévy process, we know that M is quasi-left-continuous. So, M has only inaccessible jump times.
Now, we show that K is a continuous process. From [2], we know that the jump times of K is included in the set $\{\triangle K \neq 0\} \subset\left\{\mathcal{S}_{-}(\eta)=\eta_{-}\right\}$where η_{-}is the left limit process.

Now let τ be a predictable time, then:

$$
\begin{equation*}
E\left[\mathcal{S}_{\tau-}(\eta) 1_{\left\{\Delta K_{\tau}>0\right\}}\right]=E\left[\eta_{\tau-} 1_{\left\{\Delta K_{\tau}>0\right\}}\right] \leqslant E\left[\eta_{\tau} 1_{\left\{\Delta K_{\tau}>0\right\}}\right] \leqslant E\left[\mathcal{S}_{\tau}(\eta) 1_{\left\{\Delta K_{\tau}>0\right\}}\right] \tag{11}
\end{equation*}
$$

The first inequality is obtained through the fact that the process η has inaccessible jumping times, and may have a positive jump at T.

On the other hand,

$$
\begin{align*}
E\left[\mathcal{S}_{\tau-}(\eta) 1_{\left\{\Delta K_{\tau}=0\right\}}\right] & =E\left[\left(M_{\tau-}+K_{\tau}\right) 1_{\left\{\Delta K_{\tau}=0\right\}}\right]=E\left[\left(M_{\tau}+K_{\tau}\right) 1_{\left\{\Delta K_{\tau}=0\right\}}\right] \\
& =E\left[\mathcal{S}_{\tau}(\eta) 1_{\left\{\Delta K_{\tau}=0\right\}}\right] \tag{12}
\end{align*}
$$

Then from (11) and (12), we have $E\left[\mathcal{S}_{\tau-}(\eta)\right] \leqslant E\left[\mathcal{S}_{\tau}(\eta)\right]$. Since $\mathcal{S}(\eta)$ is a supermartingale. For any predictable time τ, we have $E\left[\mathcal{S}_{\tau_{-}}(\eta)\right]=E\left[\mathcal{S}_{\tau}(\eta)\right]$. So, $\left\{\mathcal{S}_{t}(\eta)\right\}_{0 \leqslant t \leqslant T}$ is regular ([4], Definition 5.49), i.e. $\mathcal{S}_{-}(\eta)=^{p} \mathcal{S}(\eta)$. Then, the process K is continuous ([4], Theorem 5.49).

Now let us set

$$
\begin{equation*}
Y_{t}=\operatorname{esssup}_{v \in \mathcal{T}_{t}} E\left[\xi 1_{\{v=T\}}+S_{v} 1_{\{v<T\}}+\int_{t}^{v} f(s) \mathrm{d} s+\int_{t}^{v} g(s) \mathrm{d} B_{s} \mid q_{t}\right] \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
Y_{t}+\int_{0}^{t} f(s) \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} B_{s}=\mathcal{S}_{t}(\eta)=M_{t}-K_{t} \tag{14}
\end{equation*}
$$

Henceforth, we have

$$
\begin{equation*}
Y_{t}+\int_{0}^{t} f(s) \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} B_{s}=E\left[\xi+\int_{0}^{T} f(s) \mathrm{d} s+\int_{0}^{T} g(s) \mathrm{d} B_{s}+K_{T}\right]+\sum_{i=0}^{\infty} \int_{0}^{t} Z_{s}^{(i)} \mathrm{d} H_{s}^{(i)}-K_{t} \tag{15}
\end{equation*}
$$

So,

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f(s) \mathrm{d} s+\int_{t}^{T} g(s) \mathrm{d} B_{s}+K_{T}-K_{t}-\sum_{i=0}^{\infty} \int_{t}^{T} Z_{s}^{(i)} \mathrm{d} H_{s}^{(i)}, \quad 0 \leqslant t \leqslant T \tag{16}
\end{equation*}
$$

Since $Y_{t}+\int_{0}^{t} g(s) \mathrm{d} s=\mathcal{S}_{t}(\eta)$ and $\mathcal{S}_{t}(\eta) \geqslant \eta_{t}=\xi 1_{\{t=T\}}+S_{t} 1_{\{t<T\}}+\int_{0}^{t} f(s) \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} B_{s}$. Then, for all $0 \leqslant t \leqslant T$, we have $Y_{t} \geqslant S_{t}$.

Finally, from [2], we get $\int_{0}^{T}\left(\mathcal{S}_{t-}(\eta)-\eta_{t-}\right) \mathrm{d} K_{t}=0$, i.e.

$$
\begin{equation*}
\int_{0}^{T}\left(Y_{t-}-S_{t-}\right) \mathrm{d} K_{t}=\int_{0}^{T}\left(\mathcal{S}_{t-}(\eta)-\eta_{t-}\right) \mathrm{d} K_{t}=0 \tag{17}
\end{equation*}
$$

So, the process $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$ is a solution of the RBDSDEs (1) associated with (ξ, f, g, S).

Theorem 3. Assume the assumptions (H 1$)-(\mathrm{H} 4)$ hold. Then, RBDSDEs (1) associated with (ξ, f, g, S) has a unique solution $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leqslant t \leqslant T}$.

Proof. Let $\mathscr{H}=S^{2} \times \mathcal{P}^{2}\left(l^{2}\right)$ endowed with the norm

$$
\begin{equation*}
\|(Y, Z)\|_{\beta}=\left(E\left[\int_{0}^{T} \mathrm{e}^{\beta s}\left(\left|Y_{s-}\right|^{2}+\sum_{i=1}^{\infty}\left|Z_{s}^{(i)}\right|^{2}\right) \mathrm{d} s\right]\right)^{1 / 2} \tag{18}
\end{equation*}
$$

for a suitable constant $\beta>0$. Let Φ be the map from \mathscr{H} into itself and let $(\widetilde{Y}, \widetilde{Z})$ and $\left(\tilde{Y}^{\prime}, \widetilde{Z}^{\prime}\right)$ be two elements of \mathscr{H}. Set

$$
\begin{equation*}
(Y, Z)=\Phi(\widetilde{Y}, \tilde{Z}), \quad\left(Y^{\prime}, Z^{\prime}\right)=\Phi\left(\tilde{Y}^{\prime}, \widetilde{Z}^{\prime}\right) \tag{19}
\end{equation*}
$$

where $(Y, Z, K)\left(\left(Y^{\prime}, Z^{\prime}, K^{\prime}\right)\right)$ is the solution of the RBDSDE associated with $\left(\xi, f\left(t, \widetilde{Y}_{t-}, \widetilde{Z}_{t}\right), g\left(t, \widetilde{Y}_{t-}, \widetilde{Z}_{t}\right), S\right)\left(\left(\xi, f\left(t, \widetilde{Y_{t-}^{\prime}}\right.\right.\right.$, $\left.\left.\left.\widetilde{Z_{t-}^{\prime}}\right), g\left(t, \widetilde{Y_{t-}^{\prime}}, \widetilde{Z_{t-}^{\prime}}\right), S\right)\right)$.

By the Itô formula and integration by parts, we obtain

$$
\begin{align*}
\mathrm{e}^{\beta t}\left(Y_{t}-Y_{t}^{\prime}\right)^{2}= & -\beta \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)^{2} \mathrm{~d} s+2 \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)\left[f\left(s, \widetilde{Y}_{s-}, \widetilde{Z}_{s}\right)-f\left(s, \widetilde{Y_{s-}^{\prime}}, \widetilde{Z_{s-}^{\prime}}\right)\right] \mathrm{d} s \\
& +2 \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)\left[g\left(s, \widetilde{Y}_{s-}, \widetilde{Z}_{s}\right)-g\left(s, \widetilde{Y_{s-}^{\prime}}, \widetilde{Z_{s-}^{\prime}}\right)\right] \mathrm{d} B_{s} \\
& +2 \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)\left(\mathrm{d} K_{s}-\mathrm{d} K_{s}^{\prime}\right)+\int_{t}^{T} \mathrm{e}^{\beta s}\left|g\left(s, \widetilde{Y}_{s-}, \widetilde{Z}_{s}\right)-g\left(s, \widetilde{Y_{s-}^{\prime}}, \widetilde{Z_{s-}^{\prime}}\right)\right|^{2} \mathrm{~d} s \\
& -2 \sum_{i=1}^{\infty} \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)\left(Z_{s}^{(i)}-Z_{s}^{\prime(i)}\right) \mathrm{d} H_{s}^{(i)} \\
& -\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \int_{0}^{t} \mathrm{e}^{\beta s}\left(Z_{s}^{(i)}-Z_{s}^{\prime(i)}\right)\left(Z_{s}^{(j)}-Z_{s}^{\prime(j)}\right) \mathrm{d}\left[H^{(i)}, H^{(j)}\right]_{s} \tag{20}
\end{align*}
$$

Noting that $\int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)\left(\mathrm{d} K_{s}-\mathrm{d} K_{s}^{\prime}\right) \leqslant 0$, using the fact $\left\langle H^{(i)}, H^{(j)}\right\rangle_{t}=\delta_{i j} t$ and taking the expectation on the both sides of (20), we obtain

$$
\begin{aligned}
& E\left[\mathrm{e}^{\beta t}\left(Y_{t}-Y_{t}^{\prime}\right)^{2}\right]+\beta E \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)^{2} \mathrm{~d} s+E \int_{t}^{T} \mathrm{e}^{\beta s}\left\|Z_{s}-Z_{s}^{\prime}\right\|^{2} \mathrm{~d} s \\
& \quad \leqslant \frac{2 C}{1-\alpha} E \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)^{2} \mathrm{~d} s+\left(C+\frac{1-\alpha}{2}\right) E \int_{t}^{T} \mathrm{e}^{\beta s}\left|\widetilde{Y}_{s-}-\widetilde{Y_{s-}^{\prime}}\right|^{2} \mathrm{~d} s \\
& \quad+\frac{1+\alpha}{2} E \int_{t}^{T} \mathrm{e}^{\beta s}\left\|\widetilde{Z}_{s-}-\widetilde{Z_{s-}^{\prime}}\right\|^{2} \mathrm{~d} s .
\end{aligned}
$$

Let $\gamma=\frac{2 C}{1-\alpha}, \bar{C}=2\left(C+\frac{1-\alpha}{2}\right) / 1+\alpha$ and $\beta=\gamma+\bar{C}$, we get

$$
\begin{aligned}
& E\left[\mathrm{e}^{\beta t}\left|Y_{t}-Y_{t}^{\prime}\right|^{2}\right]+\bar{C} E \int_{t}^{T} \mathrm{e}^{\beta s}\left(Y_{s-}-Y_{s-}^{\prime}\right)^{2} \mathrm{~d} s+E \int_{t}^{T} \mathrm{e}^{\beta s}\left\|Z_{s}-Z_{s}^{\prime}\right\|^{2} \mathrm{~d} s \\
& \quad \leqslant \frac{1+\alpha}{2} E \int_{t}^{T} \mathrm{e}^{\beta s}\left(\bar{C}\left|\widetilde{Y}_{s-}-\widetilde{Y_{s-}^{\prime}}\right|^{2}+\left\|\widetilde{Z}_{s-}-\widetilde{Z_{s-}^{\prime}}\right\|^{2}\right) \mathrm{d} s
\end{aligned}
$$

Noting that $E\left[\mathrm{e}^{\beta t}\left(Y_{t}-Y_{t}^{\prime}\right)^{2}\right] \geqslant 0$, we obtain

$$
E \int_{t}^{T} \mathrm{e}^{\beta s}\left(\bar{C}\left|Y_{s-}-Y_{s-}^{\prime}\right|^{2} \mathrm{~d} s+\left\|Z_{s}-Z_{s}^{\prime}\right\|^{2}\right) \mathrm{d} s \leqslant \frac{1+\alpha}{2} E \int_{t}^{T} \mathrm{e}^{\beta s}\left(\bar{C}\left|\widetilde{Y}_{s-}-\widetilde{Y_{s-}^{\prime}}\right|^{2}+\left\|\widetilde{Z}_{s-}-\widetilde{Z_{s-}^{\prime}}\right\|^{2}\right) \mathrm{d} s
$$

that is $\|(Y, Z)\|_{\beta}^{2} \leqslant \frac{1+\alpha}{2}\left\|\left(Y^{\prime}, Z^{\prime}\right)\right\|_{\beta}^{2}$. From which it follows that Φ is a strict contraction on \mathscr{H} with the norm $\|\cdot\|_{\beta}$ where β is defined as above. Then, Φ has a unique fixed point $(Y, Z) \in \mathscr{H}$, from the Burkholder-Davis-Gundy inequality, which is the unique solution of RBDSDEs (1).

Acknowledgement

The author would like to thank the anonymous referee for the valuable comments and correcting some errors.

References

[1] K. Bahlali, M. Hassani, B. Mansouri, N. Mrhardy, One barrier reflected backward doubly stochastic differential equations with continuous generator, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1201-1206.
[2] S. Hamadène, Reflected BSDEs with discontinuous barrier and applications, Stochastics Stochastics Rep. 74 (2002) 571-596.
[3] S. Hamadène, Y. Ouknine, Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. Probab. 8 (2003) 1-20.
[4] S. He, J. Wang, J. Yan, Semimartingale and Stochastic Analysis, Scientific Press, Beijing, 1995.
[5] J.-P. Lepeltier, M. Xu, Penalization method for reflected backward stochastic differential equations with one r.c.l.1. barrier, Statist. Probab. Lett. 75 (2005) 58-66.
[6] D. Nualart, W. Schoutens, Chaotic and predictable representation for Lévy processes, Stochastic Process. Appl. 90 (2000) 109-122.
[7] Y. Ren, L. Hu, Reflected backward stochastic differential equation driven by Lévy processes, Statist. Probab. Lett. 77 (2007) $1559-1566$.
[8] Y. Ren, A. Lin, L. Hu, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math. 223 (2009) 901-907.

[^0]: 放 The work is supported by the National Natural Science Foundation of China (Project 10901003) and the Great Research Project of Natural Science Foundation of Anhui Provincial Universities.

 E-mail addresses: brightry@hotmail.com, renyong@126.com.
 1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.11.004

