Mathematical Analysis

## Sharp constants in the Paneyah-Logvinenko-Sereda theorem

Sur les constantes optimales dans le théorème de Paneyah-Logvinenko-Sereda

## Alexander Reznikov

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

## A R T I C L E IN F O

Article history:
Received 23 October 2009
Accepted 28 October 2009
Available online 8 January 2010
Presented by Gilles Pisier


#### Abstract

We shall find some sharp constants in one type of uncertainty principle - Paneyah-Logvinenko-Sereda theorem. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}


On trouve la norme de l'opérateur inverse de l'opérateur de restriction pour deux types d'ensembles dans la classe des fonctions de Paley-Wiener.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

Consider the complex-valued function $f \in L^{2}(\mathbb{R})=L^{2}(\mathbb{R}, m)$, where $m$ is the Lebesgue measure on $\mathbb{R}$. The Fourier transform $\hat{f}$ of $f$ is defined as follows:

$$
\begin{equation*}
\hat{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(t) \mathrm{e}^{\mathrm{i} \xi t} \mathrm{~d} t, \quad \xi \in \mathbb{R} \tag{1}
\end{equation*}
$$

SO

$$
\begin{equation*}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{f}(\xi) \mathrm{e}^{-\mathrm{i} t \xi} \mathrm{~d} \xi, \quad t \in \mathbb{R} \tag{2}
\end{equation*}
$$

and

$$
\|f\|_{L^{2}(\mathbb{R})}=\|\hat{f}\|_{L^{2}(\mathbb{R})}
$$

The integrals in (1) and (2) exist in the sense of Plancherel's theorem. We say that the closed support of $\hat{f}$ is the spectrum of $f$ and write $\operatorname{spec}(f)$. For $\sigma>0$ put

$$
\mathfrak{E}_{\sigma}=\left\{f \in L^{2}(\mathbb{R}): \operatorname{spec}(f) \subset[-\sigma, \sigma]\right\} .
$$

The class $\mathfrak{E}_{\sigma}$ is very important in harmonic analysis. By Paley-Wiener theorem $f \in \mathfrak{E}_{\sigma}$ if and only if $f$ is an analytic function on $\mathbb{C}$ and the exponential type of $f$ is not more than $\sigma$.

[^0]Consider now a measurable set $S \subset \mathbb{R}$. We say that $S$ is essential if for some $\sigma>0$ there exists a constant $C(S, \sigma)$ such that the inequality

$$
\begin{equation*}
\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x \leqslant C(S, \sigma) \int_{S}|f(x)|^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

holds for every $f \in \mathfrak{E}_{\sigma}$. If $S$ is essential then such a constant exists for every $\sigma>0$. Below we shall always assume that $C(S, \sigma)$ is the sharp constant. B. Paneyah proved the theorem:

Theorem 1 (B. Paneyah). The following two conditions are equivalent: $1 . S$ is an essential set; $2 . S$ is relatively dense.
Condition 2 means that there exist constants $r$ and $\delta>0$ such that $m([x-r, x+r] \cap S)>\delta$ for every $x \in \mathbb{R}$.
There are many proofs of the above theorem and each of them gives some estimates on $C(S, \sigma)$ but these estimates are not sharp (see, for example, [1]). We determine sharp constants for two specific sets $S$ : when $S=\mathbb{R} \backslash[-R, R]$ for some $R>0$ and when $S=\bigcup_{n \in \mathbb{Z}}[n l-R, n l+R]$ for some $l>2 R>0$. A similar question for general model spaces $K_{\theta}$ was considered in [4].

## 2. Main results

We prove the following theorems:
Theorem 2.1. Let $R>0$ and $S=\mathbb{R} \backslash[-R, R]$. Denote $C(R, \sigma)=C(S, \sigma)$. Then

$$
\begin{align*}
& C(R, R) \sim \frac{1}{1-\frac{2 R^{2}}{\pi}} \sim 1+\frac{2 R^{2}}{\pi}, \quad \text { when } R \rightarrow 0  \tag{4}\\
& C(R, R)=\frac{\mathrm{e}^{2 R^{2}}}{4 R \sqrt{\pi}}\left(1+O\left(\frac{1}{R^{2}}\right)\right), \quad R \rightarrow \infty \tag{5}
\end{align*}
$$

Also

$$
\begin{equation*}
C(R, \sigma)=C(\sqrt{R \sigma}, \sqrt{R \sigma}) \tag{6}
\end{equation*}
$$

so

$$
\begin{align*}
& C(R, \sigma)=C(\sqrt{R \sigma}, \sqrt{R \sigma}) \sim 1+\frac{2 R \sigma}{\pi}, \quad R \sigma \rightarrow 0  \tag{7}\\
& C(R, \sigma)=\frac{\mathrm{e}^{2 R \sigma}}{4 \sqrt{\pi R \sigma}}\left(1+O\left(\frac{1}{R \sigma}\right)\right), \quad R \sigma \rightarrow \infty \tag{8}
\end{align*}
$$

Lemma 2.2. Let $R>0, l>2 R$,

$$
S=\bigcup_{n \in \mathbb{Z}}[n l-R, n l+R] .
$$

Denote $C(R, l, \sigma)=C(S, \sigma)$. Then

$$
C(R, l, \sigma)=C\left(\frac{2 \pi R}{l}, 2 \pi, \frac{l \sigma}{2 \pi}\right)
$$

Now to the $2 \pi$-periodic function $w$ we associate the matrix

$$
M_{n}(w)=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-1} & c_{n} \\
\bar{c}_{1} & c_{0} & c_{1} & \ldots & c_{n-2} & c_{n-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
\bar{c}_{n} & \bar{c}_{n-1} & \bar{c}_{n-2} & \ldots & \bar{c}_{1} & c_{0},
\end{array}\right)
$$

where

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} w(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t
$$

Theorem 2.3. Let $S$ be as in Lemma 2.2 with $l=2 \pi$. Then for $\sigma \leqslant \frac{1}{2}, C(R, 2 \pi, \sigma)=\frac{\pi}{R}$ and for every function $f \in \mathfrak{E}_{\sigma}$ we can put $=$ in (3) instead of $\leqslant$.

Let $\frac{1}{2}<\sigma \leqslant 1$. Then

$$
C(R, l, \sigma)=\frac{\pi}{\frac{2 \pi R}{l}-\sin \left(\frac{2 \pi R}{l}\right)}
$$

In general, if $\frac{n}{2}<\sigma \leqslant \frac{n+1}{2}$ for some integer $n$, then $C(S, \sigma)=\lambda_{n}^{-1}$, where $\lambda_{n}$ is the smallest eigenvalue of the matrix $M_{n}\left(\chi_{S}\right)$ and

$$
\chi_{S}(x)= \begin{cases}1, & x \in S \\ 0, & x \notin S\end{cases}
$$

Remark 1. Note that if $w=\chi_{S}$ then

$$
c_{k}=\frac{\sin (k R)}{R}
$$

Theorem 2.4. Let $S, \sigma$ be as in above theorem. Let $\frac{n}{2}<\sigma \leqslant \frac{n+1}{2}$ for some integer $n$. Let $y=\left(y_{1}, \ldots y_{n+1}\right)$ be the eigenvector of $M_{n}$ such that $M_{n} y=\lambda_{n} y$. For $0 \leqslant k \leqslant n$ put $J_{k}=(n-k-\sigma, \sigma-k)$. Denote now

$$
u_{e x}(\xi)= \begin{cases}y_{k}, & \xi \in J_{k} \\ 0, & \xi \notin \bigcup J_{k}\end{cases}
$$

and

$$
f_{e x}(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} u_{e x}(\xi) \mathrm{e}^{-\mathrm{i} \xi x} \mathrm{~d} \xi
$$

Then

$$
\int_{\mathbb{R}}\left|f_{e x}(x)\right|^{2} \mathrm{~d} x=C(S, \sigma) \int_{S}\left|f_{e x}(x)\right|^{2} \mathrm{~d} x
$$

Theorem 2.5. Let $w$ be a measurable nonnegative $2 \pi$-periodic function which is positive on a set of positive measure. Put $L^{2}(w)=$ $L^{2}(w \cdot d m)$ and $\|f\|_{w}=\|f\|_{L^{2}(w)}$. Assume there exists a constant $Q$ such that

$$
\left|\sum_{|n|<N} c_{n} \mathrm{e}^{\mathrm{i} n x}\right|<Q
$$

for every $N \in \mathbb{N}$. Then

$$
\|f\|_{\mathbb{R}}^{2} \leqslant \lambda_{n}^{-1}\|f\|_{w}^{2}
$$

where $\lambda_{n}$ is the smallest eigenvalue of the matrix $M_{n}(w)$.

## 3. Idea of proof of Theorem 2.1

One can easily deduce (6) by scaling. We show how to find $C(R, R)$. We introduce an operator $K_{1}: L^{2}(-R, R) \rightarrow$ $L^{2}(-R, R)$ :

$$
K_{1} u(x)=\frac{1}{\sqrt{2 \pi}} \int_{-R}^{R} \mathrm{e}^{-\mathrm{i} x t} u(t) \mathrm{d} t
$$

It is easy to see that for $f \in \mathfrak{E}_{R}$

$$
\begin{equation*}
\|f\|_{\mathbb{R}}^{2} \leqslant\left\|f-\chi_{(-R, R)} f\right\|_{\mathbb{R}}^{2}+\left\|K_{1}\right\|_{2}^{2}\|f\|_{\mathbb{R}}^{2} \tag{9}
\end{equation*}
$$

Here $\|f\|_{\mathbb{R}}$ is $L^{2}(\mathbb{R})$-norm and $\left\|K_{1}\right\|_{2}$ is an operator norm of $K_{1}: L^{2}(-R, R) \rightarrow L^{2}(-R, R)$.
$K_{1}$ is compact operator with discrete spectrum and $K_{1} K_{1}^{*}=K_{1}^{*} K_{1}$, so

$$
\begin{equation*}
\left\|K_{1}\right\|_{2}=\max \left\{|\lambda|: \exists u \not \equiv 0: K_{1} u=\lambda u\right\}=|\mu| \tag{10}
\end{equation*}
$$

It is now obvious that the inequality (9) becomes equality for certain $f \in \mathfrak{E}_{R}$ (take the eigenvector $u_{e x}$ such that $K_{1} u=\mu u$ and find $f$ such that $u=\hat{f}$ ).

We introduce one more operator:

$$
T u(t)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(1-t^{2}\right) u^{\prime}(t)\right), \quad t \in(-1,1), u \in C_{0}^{\infty}(-1,1)
$$

This operator has an extension to a self-adjoint operator $T$ with spectrum $\left\{-\ell(\ell+1): \ell \in \mathbb{Z}_{+}\right\}$. Put now

$$
A u(t)=T u(t)+R^{4}\left(1-t^{2}\right) u(t), \quad t \in(-1,1)
$$

The following proposition is well known (see [3]):
Proposition 3.1. If $v$ is an eigenfunction of the operator $A$ then the function $u: x \mapsto v\left(\frac{x}{R}\right), x \in(-R, R)$, is an eigenfunction of the operator $K_{1}$.

If $m_{0}$ is the eigenvalue of the operator $A$ with smallest absolute value and $A v=m_{0} v$ then $K_{1} u=\mu u$ (where $\mu$ is introduced in (10)).

The eigenfunctions of the operator $A$ are called Prolate Spheroidal Wave Functions. Now we have to find $v$. If $R \rightarrow 0$ then it is easy to find the asymptotic of $v$ by means of the perturbation theory (see [2]).

If $R \rightarrow \infty$ then it is harder but still possible, see [3, Ch. $1, \S 5$ ].

## 4. Brief proof of Theorem 2.3

Observe that if $\operatorname{spec}(f) \subset[-\sigma, \sigma]$ then $\operatorname{spec}\left(|f|^{2}\right) \subset[-2 \sigma, 2 \sigma]$ and $\widehat{|f|^{2}}( \pm 2 \sigma)=0$. Let $\frac{n}{2}<\sigma \leqslant \frac{n+1}{2}$. We have

$$
\chi_{S}(x)=\sum c_{n} \mathrm{e}^{\mathrm{i} n x}
$$

so

$$
\begin{equation*}
\int_{S}|f(x)|^{2} \mathrm{~d} x=\sum c_{k} \sqrt{2 \pi} \mid \widehat{\left.f\right|^{2}}(k)=c_{0}\|f\|_{2}^{2}+\sum_{0<|k|<n+1} c_{k} \int u(\xi) \bar{u}(\xi-k) \mathrm{d} \xi \tag{11}
\end{equation*}
$$

where $u=\hat{f}$. Now the first statement of Theorem 2.3 is obvious and we shall prove the general statement. We shall introduce $n+1$ vectors in $L^{2}(n-\sigma, \sigma)$ : for $k=0, \ldots, n$ put $v_{k}=u(\xi-k), \xi \in(n-\sigma, \sigma)$. Denote $E=\operatorname{span}\left\{v_{k}\right\}$ and $v=\left(v_{0}\right.$, $\left.\ldots, v_{n}\right)^{T}$. For $k=0, \ldots, n-1$ put also $w_{k}=u(\xi-k), \xi \in(\sigma-1, n-\sigma), F=\operatorname{span}\left\{w_{k}\right\}, w=\left(w_{0}, \ldots, w_{n-1}\right)^{T}$. Then the righthand side of (11) is equal to $\left(A_{n} v, v\right)+\left(A_{n-1} w, w\right)$, where $A_{n}$ acts on the vector $v$ like multiplication of the matrix $M_{n}$ by the column $v$. One can see that the spectrum of $A_{n}$ is equal to the spectrum of $M_{n}$ (and the same for $A_{n-1}$ and $M_{n-1}$ ). So

$$
\left(A_{n} v, v\right)+\left(A_{n-1} w, w\right) \geqslant \lambda_{n}\|v\|^{2}+\lambda_{n-1}\|w\|^{2} \geqslant \min \left(\lambda_{n}, \lambda_{n-1}\right)\|u\|_{(-\sigma, \sigma)}^{2}=\min \left(\lambda_{n}, \lambda_{n-1}\right)\|f\|_{\mathbb{R}}^{2}
$$

It is very easy to see that $\lambda_{n} \leqslant \lambda_{n-1}$. Combining (11) and the last inequality we obtain

$$
\int_{S}|f(x)|^{2} \mathrm{~d} x \geqslant \lambda_{n}\|f\|_{\mathbb{R}}^{2}
$$

Now it is easy to see that Theorem 2.4 holds.
The second statement of Theorem 2.3 is just a corollary of the previous result.
The last theorem can be proved in the same way.

## Acknowledgements

I am very grateful to Professor V. Havin for the problem statement and advice and to D. Chelkak and A. Nazarov for very important advice.

## References

[1] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994.
[2] T. Kato, Perturbation Theory for Linear Operators, Springer, 1995.
[3] I. Komarov, L. Ponomaryov, S. Slavyanov, Spheroid and Coulons Spheroid Functions, Nauka, 1976 (in Russian).
[4] A.L. Volberg, Thin and thick families of rational fractions, in: Complex Analysis and Spectral Theory, in: Lecture Notes in Math., vol. 864, 1981, pp. 440480.


[^0]:    E-mail addresses: rezniko2@msu.edu, reznikov@ymail.com.

