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We shall find some sharp constants in one type of uncertainty principle — Paneyah–
Logvinenko–Sereda theorem.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On trouve la norme de l’opérateur inverse de l’opérateur de restriction pour deux types
d’ensembles dans la classe des fonctions de Paley–Wiener.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the complex-valued function f ∈ L2(R) = L2(R,m), where m is the Lebesgue measure on R. The Fourier trans-
form f̂ of f is defined as follows:

f̂ (ξ) = 1√
2π

∫
R

f (t)eiξt dt, ξ ∈ R, (1)

so

f (t) = 1√
2π

∫
R

f̂ (ξ)e−itξ dξ, t ∈ R, (2)

and

‖ f ‖L2(R) = ‖ f̂ ‖L2(R).

The integrals in (1) and (2) exist in the sense of Plancherel’s theorem. We say that the closed support of f̂ is the spectrum
of f and write spec( f ). For σ > 0 put

Eσ = {
f ∈ L2(R): spec( f ) ⊂ [−σ ,σ ]}.

The class Eσ is very important in harmonic analysis. By Paley–Wiener theorem f ∈ Eσ if and only if f is an analytic
function on C and the exponential type of f is not more than σ .
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Consider now a measurable set S ⊂ R. We say that S is essential if for some σ > 0 there exists a constant C(S, σ ) such
that the inequality∫

R

∣∣ f (x)
∣∣2

dx � C(S,σ )

∫
S

∣∣ f (x)
∣∣2

dx (3)

holds for every f ∈ Eσ . If S is essential then such a constant exists for every σ > 0. Below we shall always assume that
C(S, σ ) is the sharp constant. B. Paneyah proved the theorem:

Theorem 1 (B. Paneyah). The following two conditions are equivalent: 1. S is an essential set; 2. S is relatively dense.

Condition 2 means that there exist constants r and δ > 0 such that m([x − r, x + r] ∩ S) > δ for every x ∈ R.
There are many proofs of the above theorem and each of them gives some estimates on C(S, σ ) but these estimates

are not sharp (see, for example, [1]). We determine sharp constants for two specific sets S: when S = R \ [−R, R] for
some R > 0 and when S = ⋃

n∈Z
[nl − R,nl + R] for some l > 2R > 0. A similar question for general model spaces Kθ was

considered in [4].

2. Main results

We prove the following theorems:

Theorem 2.1. Let R > 0 and S = R \ [−R, R]. Denote C(R, σ ) = C(S, σ ). Then

C(R, R) ∼ 1

1 − 2R2

π

∼ 1 + 2R2

π
, when R → 0, (4)

C(R, R) = e2R2

4R
√

π

(
1 + O

(
1

R2

))
, R → ∞. (5)

Also

C(R,σ ) = C
(√

Rσ ,
√

Rσ
)
, (6)

so

C(R,σ ) = C
(√

Rσ ,
√

Rσ
) ∼ 1 + 2Rσ

π
, Rσ → 0, (7)

C(R,σ ) = e2Rσ

4
√

π Rσ

(
1 + O

(
1

Rσ

))
, Rσ → ∞. (8)

Lemma 2.2. Let R > 0, l > 2R,

S =
⋃
n∈Z

[nl − R,nl + R].

Denote C(R, l, σ ) = C(S, σ ). Then

C(R, l,σ ) = C

(
2π R

l
,2π,

lσ

2π

)
.

Now to the 2π -periodic function w we associate the matrix

Mn(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 . . . cn−1 cn

c̄1 c0 c1 . . . cn−2 cn−1
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

...
...

c̄n c̄n−1 c̄n−2 . . . c̄1 c0,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

ck = 1

2π

π∫
−π

w(t)e−ikt dt.
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Theorem 2.3. Let S be as in Lemma 2.2 with l = 2π . Then for σ � 1
2 , C(R,2π,σ ) = π

R and for every function f ∈ Eσ we can put =
in (3) instead of �.

Let 1
2 < σ � 1. Then

C(R, l,σ ) = π
2π R

l − sin( 2π R
l )

.

In general, if n
2 < σ � n+1

2 for some integer n, then C(S, σ ) = λ−1
n , where λn is the smallest eigenvalue of the matrix Mn(χS ) and

χS(x) =
{

1, x ∈ S,

0, x /∈ S.

Remark 1. Note that if w = χS then

ck = sin(kR)

R
.

Theorem 2.4. Let S, σ be as in above theorem. Let n
2 < σ � n+1

2 for some integer n. Let y = (y1, . . . yn+1) be the eigenvector of Mn
such that Mn y = λn y. For 0 � k � n put Jk = (n − k − σ ,σ − k). Denote now

uex(ξ) =
{

yk, ξ ∈ Jk

0, ξ /∈ ⋃
Jk

and

fex(x) = 1√
2π

∫
R

uex(ξ)e−iξx dξ.

Then ∫
R

∣∣ fex(x)
∣∣2

dx = C(S,σ )

∫
S

∣∣ fex(x)
∣∣2

dx.

Theorem 2.5. Let w be a measurable nonnegative 2π -periodic function which is positive on a set of positive measure. Put L2(w) =
L2(w · dm) and ‖ f ‖w = ‖ f ‖L2(w) . Assume there exists a constant Q such that∣∣∣∣ ∑

|n|<N

cneinx

∣∣∣∣ < Q

for every N ∈ N. Then

‖ f ‖2
R

� λ−1
n ‖ f ‖2

w ,

where λn is the smallest eigenvalue of the matrix Mn(w).

3. Idea of proof of Theorem 2.1

One can easily deduce (6) by scaling. We show how to find C(R, R). We introduce an operator K1 : L2(−R, R) →
L2(−R, R):

K1u(x) = 1√
2π

R∫
−R

e−ixt u(t)dt.

It is easy to see that for f ∈ ER

‖ f ‖2
R

� ‖ f − χ(−R,R) f ‖2
R

+ ‖K1‖2
2‖ f ‖2

R
. (9)

Here ‖ f ‖R is L2(R)-norm and ‖K1‖2 is an operator norm of K1 : L2(−R, R) → L2(−R, R).
K1 is compact operator with discrete spectrum and K1 K ∗

1 = K ∗
1 K1, so

‖K1‖2 = max
{|λ|: ∃u �≡ 0: K1u = λu

} = |μ|. (10)

It is now obvious that the inequality (9) becomes equality for certain f ∈ ER (take the eigenvector uex such that K1u = μu
and find f such that u = f̂ ).
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We introduce one more operator:

T u(t) = d

dt

((
1 − t2)u′(t)

)
, t ∈ (−1,1), u ∈ C∞

0 (−1,1).

This operator has an extension to a self-adjoint operator T with spectrum {−	(	 + 1): 	 ∈ Z+}. Put now

Au(t) = T u(t) + R4(1 − t2)u(t), t ∈ (−1,1).

The following proposition is well known (see [3]):

Proposition 3.1. If v is an eigenfunction of the operator A then the function u : x �→ v( x
R ), x ∈ (−R, R), is an eigenfunction of the

operator K1 .
If m0 is the eigenvalue of the operator A with smallest absolute value and Av = m0 v then K1u = μu (where μ is introduced

in (10)).

The eigenfunctions of the operator A are called Prolate Spheroidal Wave Functions. Now we have to find v . If R → 0 then
it is easy to find the asymptotic of v by means of the perturbation theory (see [2]).

If R → ∞ then it is harder but still possible, see [3, Ch. 1, §5].

4. Brief proof of Theorem 2.3

Observe that if spec( f ) ⊂ [−σ ,σ ] then spec(| f |2) ⊂ [−2σ ,2σ ] and |̂ f |2(±2σ) = 0. Let n
2 < σ � n+1

2 . We have

χS(x) =
∑

cneinx,

so ∫
S

∣∣ f (x)
∣∣2

dx =
∑

ck

√
2π |̂ f |2(k) = c0‖ f ‖2

2 +
∑

0<|k|<n+1

ck

∫
u(ξ)ū(ξ − k)dξ, (11)

where u = f̂ . Now the first statement of Theorem 2.3 is obvious and we shall prove the general statement. We shall
introduce n + 1 vectors in L2(n −σ ,σ ): for k = 0, . . . ,n put vk = u(ξ − k), ξ ∈ (n −σ ,σ ). Denote E = span{vk} and v = (v0,

. . . , vn)T . For k = 0, . . . ,n−1 put also wk = u(ξ −k), ξ ∈ (σ −1,n−σ), F = span{wk}, w = (w0, . . . , wn−1)
T . Then the right-

hand side of (11) is equal to (An v, v) + (An−1 w, w), where An acts on the vector v like multiplication of the matrix Mn by
the column v . One can see that the spectrum of An is equal to the spectrum of Mn (and the same for An−1 and Mn−1). So

(An v, v) + (An−1 w, w) � λn‖v‖2 + λn−1‖w‖2 � min(λn, λn−1)‖u‖2
(−σ ,σ ) = min(λn, λn−1)‖ f ‖2

R
.

It is very easy to see that λn � λn−1. Combining (11) and the last inequality we obtain∫
S

∣∣ f (x)
∣∣2

dx � λn‖ f ‖2
R
.

Now it is easy to see that Theorem 2.4 holds.
The second statement of Theorem 2.3 is just a corollary of the previous result.
The last theorem can be proved in the same way.
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