

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Sharp constants in the Paneyah–Logvinenko–Sereda theorem

Sur les constantes optimales dans le théorème de Paneyah-Logvinenko-Sereda

Alexander Reznikov

Mathematical Analysis

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

ARTICLE INFO	ABSTRACT
Article history: Received 23 October 2009 Accepted 28 October 2009 Available online 8 January 2010	We shall find some sharp constants in one type of uncertainty principle — Paneyah– Logvinenko–Sereda theorem. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Presented by Gilles Pisier	RÉSUMÉ
	On trouve la norme de l'opérateur inverse de l'opérateur de restriction pour deux types d'ensembles dans la classe des fonctions de Paley–Wiener. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the complex-valued function $f \in L^2(\mathbb{R}) = L^2(\mathbb{R}, m)$, where *m* is the Lebesgue measure on \mathbb{R} . The Fourier transform \hat{f} of *f* is defined as follows:

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{T}} f(t) \mathrm{e}^{\mathrm{i}\xi t} \,\mathrm{d}t, \quad \xi \in \mathbb{R},\tag{1}$$

SO

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) e^{-it\xi} d\xi, \quad t \in \mathbb{R},$$
(2)

and

$$\|f\|_{L^2(\mathbb{R})} = \|\hat{f}\|_{L^2(\mathbb{R})}.$$

The integrals in (1) and (2) exist in the sense of Plancherel's theorem. We say that the closed support of \hat{f} is the *spectrum* of f and write spec(f). For $\sigma > 0$ put

$$\mathfrak{E}_{\sigma} = \{ f \in L^2(\mathbb{R}) \colon \operatorname{spec}(f) \subset [-\sigma, \sigma] \}.$$

The class \mathfrak{E}_{σ} is very important in harmonic analysis. By Paley–Wiener theorem $f \in \mathfrak{E}_{\sigma}$ if and only if f is an analytic function on \mathbb{C} and the exponential type of f is not more than σ .

E-mail addresses: rezniko2@msu.edu, reznikov@ymail.com.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.10.029

Consider now a measurable set $S \subset \mathbb{R}$. We say that S is *essential* if for some $\sigma > 0$ there exists a constant $C(S, \sigma)$ such that the inequality

$$\int_{\mathbb{R}} \left| f(x) \right|^2 \mathrm{d}x \leqslant C(S,\sigma) \int_{S} \left| f(x) \right|^2 \mathrm{d}x \tag{3}$$

holds for every $f \in \mathfrak{E}_{\sigma}$. If *S* is essential then such a constant exists for every $\sigma > 0$. Below we shall always assume that $C(S, \sigma)$ is the sharp constant. B. Paneyah proved the theorem:

Theorem 1 (B. Paneyah). The following two conditions are equivalent: 1. S is an essential set; 2. S is relatively dense.

Condition 2 means that there exist constants *r* and $\delta > 0$ such that $m([x - r, x + r] \cap S) > \delta$ for every $x \in \mathbb{R}$.

There are many proofs of the above theorem and each of them gives some estimates on $C(S, \sigma)$ but these estimates are not sharp (see, for example, [1]). We determine sharp constants for two specific sets *S*: when $S = \mathbb{R} \setminus [-R, R]$ for some R > 0 and when $S = \bigcup_{n \in \mathbb{Z}} [nl - R, nl + R]$ for some l > 2R > 0. A similar question for general model spaces K_{θ} was considered in [4].

2. Main results

We prove the following theorems:

Theorem 2.1. Let R > 0 and $S = \mathbb{R} \setminus [-R, R]$. Denote $C(R, \sigma) = C(S, \sigma)$. Then

$$C(R, R) \sim \frac{1}{1 - \frac{2R^2}{\pi}} \sim 1 + \frac{2R^2}{\pi}, \quad \text{when } R \to 0,$$
 (4)

$$C(R,R) = \frac{e^{2R^2}}{4R\sqrt{\pi}} \left(1 + O\left(\frac{1}{R^2}\right) \right), \quad R \to \infty.$$
(5)

Also

$$C(R,\sigma) = C\left(\sqrt{R\sigma}, \sqrt{R\sigma}\right),\tag{6}$$

so

$$C(R,\sigma) = C\left(\sqrt{R\sigma}, \sqrt{R\sigma}\right) \sim 1 + \frac{2R\sigma}{\pi}, \quad R\sigma \to 0,$$
(7)

$$C(R,\sigma) = \frac{e^{2R\sigma}}{4\sqrt{\pi R\sigma}} \left(1 + O\left(\frac{1}{R\sigma}\right) \right), \quad R\sigma \to \infty.$$
(8)

Lemma 2.2. *Let R* > 0, *l* > 2*R*,

$$S = \bigcup_{n \in \mathbb{Z}} [nl - R, nl + R].$$

Denote $C(R, l, \sigma) = C(S, \sigma)$. Then

$$C(R, l, \sigma) = C\left(\frac{2\pi R}{l}, 2\pi, \frac{l\sigma}{2\pi}\right).$$

Now to the 2π -periodic function *w* we associate the matrix

$$M_n(w) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{n-1} & c_n \\ \bar{c}_1 & c_0 & c_1 & \dots & c_{n-2} & c_{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ \bar{c}_n & \bar{c}_{n-1} & \bar{c}_{n-2} & \dots & \bar{c}_1 & c_0, \end{pmatrix},$$

where

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} w(t) \mathrm{e}^{-\mathrm{i}kt} \,\mathrm{d}t.$$

Theorem 2.3. Let *S* be as in Lemma 2.2 with $l = 2\pi$. Then for $\sigma \leq \frac{1}{2}$, $C(R, 2\pi, \sigma) = \frac{\pi}{R}$ and for every function $f \in \mathfrak{E}_{\sigma}$ we can put = in (3) instead of \leq .

Let $\frac{1}{2} < \sigma \leq 1$. Then

$$C(R, l, \sigma) = \frac{\pi}{\frac{2\pi R}{l} - \sin(\frac{2\pi R}{l})}$$

In general, if $\frac{n}{2} < \sigma \leq \frac{n+1}{2}$ for some integer n, then $C(S, \sigma) = \lambda_n^{-1}$, where λ_n is the smallest eigenvalue of the matrix $M_n(\chi_S)$ and

$$\chi_S(x) = \begin{cases} 1, & x \in S, \\ 0, & x \notin S. \end{cases}$$

Remark 1. Note that if $w = \chi_S$ then

$$c_k = \frac{\sin(kR)}{R}$$

Theorem 2.4. Let S, σ be as in above theorem. Let $\frac{n}{2} < \sigma \leq \frac{n+1}{2}$ for some integer n. Let $y = (y_1, \dots, y_{n+1})$ be the eigenvector of M_n such that $M_n y = \lambda_n y$. For $0 \leq k \leq n$ put $J_k = (n - k - \sigma, \sigma - k)$. Denote now

$$u_{ex}(\xi) = \begin{cases} y_k, & \xi \in J_k \\ 0, & \xi \notin \bigcup J_k \end{cases}$$

and

$$f_{ex}(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u_{ex}(\xi) \mathrm{e}^{-\mathrm{i}\xi x} \mathrm{d}\xi.$$

Then

$$\int_{\mathbb{R}} \left| f_{ex}(x) \right|^2 \mathrm{d}x = C(S, \sigma) \int_{S} \left| f_{ex}(x) \right|^2 \mathrm{d}x.$$

Theorem 2.5. Let w be a measurable nonnegative 2π -periodic function which is positive on a set of positive measure. Put $L^2(w) = L^2(w \cdot dm)$ and $||f||_w = ||f||_{L^2(w)}$. Assume there exists a constant Q such that

$$\left|\sum_{|n|$$

for every $N \in \mathbb{N}$. Then

$$\|f\|_{\mathbb{R}}^2 \leqslant \lambda_n^{-1} \|f\|_w^2,$$

where λ_n is the smallest eigenvalue of the matrix $M_n(w)$.

3. Idea of proof of Theorem 2.1

One can easily deduce (6) by scaling. We show how to find C(R, R). We introduce an operator $K_1 : L^2(-R, R) \to L^2(-R, R)$:

$$K_1 u(x) = \frac{1}{\sqrt{2\pi}} \int_{-R}^{R} e^{-ixt} u(t) dt.$$

It is easy to see that for $f \in \mathfrak{E}_R$

$$\|f\|_{\mathbb{R}}^2 \leq \|f - \chi_{(-R,R)}f\|_{\mathbb{R}}^2 + \|K_1\|_2^2 \|f\|_{\mathbb{R}}^2.$$

Here $||f||_{\mathbb{R}}$ is $L^2(\mathbb{R})$ -norm and $||K_1||_2$ is an operator norm of $K_1 : L^2(-R, R) \to L^2(-R, R)$. K_1 is compact operator with discrete spectrum and $K_1K_1^* = K_1^*K_1$, so

$$\|K_1\|_2 = \max\{|\lambda|: \exists u \neq 0: K_1 u = \lambda u\} = |\mu|.$$
(10)

It is now obvious that the inequality (9) becomes equality for certain $f \in \mathfrak{E}_R$ (take the eigenvector u_{ex} such that $K_1 u = \mu u$ and find f such that $u = \hat{f}$).

(9)

We introduce one more operator:

-1

$$Tu(t) = \frac{d}{dt} \left((1 - t^2) u'(t) \right), \quad t \in (-1, 1), \ u \in C_0^{\infty}(-1, 1).$$

This operator has an extension to a self-adjoint operator T with spectrum $\{-\ell(\ell+1): \ell \in \mathbb{Z}_+\}$. Put now

$$Au(t) = Tu(t) + R^4(1-t^2)u(t), \quad t \in (-1,1).$$

The following proposition is well known (see [3]):

Proposition 3.1. If v is an eigenfunction of the operator A then the function $u : x \mapsto v(\frac{x}{R}), x \in (-R, R)$, is an eigenfunction of the operator K_1 .

If m_0 is the eigenvalue of the operator A with smallest absolute value and $Av = m_0v$ then $K_1u = \mu u$ (where μ is introduced in (10)).

The eigenfunctions of the operator A are called *Prolate Spheroidal Wave Functions*. Now we have to find v. If $R \rightarrow 0$ then it is easy to find the asymptotic of v by means of the perturbation theory (see [2]).

If $R \rightarrow \infty$ then it is harder but still possible, see [3, Ch. 1, §5].

4. Brief proof of Theorem 2.3

Observe that if spec $(f) \subset [-\sigma, \sigma]$ then spec $(|f|^2) \subset [-2\sigma, 2\sigma]$ and $\widehat{|f|^2}(\pm 2\sigma) = 0$. Let $\frac{n}{2} < \sigma \leq \frac{n+1}{2}$. We have

$$\chi_S(x) = \sum c_n \mathrm{e}^{\mathrm{i} n x},$$

SO

$$\int_{S} \left| f(x) \right|^2 \mathrm{d}x = \sum c_k \sqrt{2\pi} \, \widehat{|f|^2}(k) = c_0 \|f\|_2^2 + \sum_{0 < |k| < n+1} c_k \int u(\xi) \bar{u}(\xi - k) \, \mathrm{d}\xi, \tag{11}$$

where $u = \hat{f}$. Now the first statement of Theorem 2.3 is obvious and we shall prove the general statement. We shall introduce n + 1 vectors in $L^2(n - \sigma, \sigma)$: for k = 0, ..., n put $v_k = u(\xi - k), \xi \in (n - \sigma, \sigma)$. Denote $E = \text{span}\{v_k\}$ and $v = (v_0, ..., v_n)^T$. For k = 0, ..., n - 1 put also $w_k = u(\xi - k), \xi \in (\sigma - 1, n - \sigma), F = \text{span}\{w_k\}, w = (w_0, ..., w_{n-1})^T$. Then the right-hand side of (11) is equal to $(A_n v, v) + (A_{n-1} w, w)$, where A_n acts on the vector v like multiplication of the matrix M_n by the column v. One can see that the spectrum of A_n is equal to the spectrum of M_n (and the same for A_{n-1} and M_{n-1}). So

 $(A_{n}v, v) + (A_{n-1}w, w) \ge \lambda_{n} \|v\|^{2} + \lambda_{n-1} \|w\|^{2} \ge \min(\lambda_{n}, \lambda_{n-1}) \|u\|_{(-\sigma, \sigma)}^{2} = \min(\lambda_{n}, \lambda_{n-1}) \|f\|_{\mathbb{R}}^{2}.$

It is very easy to see that $\lambda_n \leq \lambda_{n-1}$. Combining (11) and the last inequality we obtain

$$\int_{S} \left| f(x) \right|^2 \mathrm{d}x \ge \lambda_n \| f \|_{\mathbb{R}}^2.$$

Now it is easy to see that Theorem 2.4 holds.

The second statement of Theorem 2.3 is just a corollary of the previous result.

The last theorem can be proved in the same way.

Acknowledgements

I am very grateful to Professor V. Havin for the problem statement and advice and to D. Chelkak and A. Nazarov for very important advice.

References

- [1] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994.
- [2] T. Kato, Perturbation Theory for Linear Operators, Springer, 1995.

^[3] I. Komarov, L. Ponomaryov, S. Slavyanov, Spheroid and Coulons Spheroid Functions, Nauka, 1976 (in Russian).

^[4] A.L. Volberg, Thin and thick families of rational fractions, in: Complex Analysis and Spectral Theory, in: Lecture Notes in Math., vol. 864, 1981, pp. 440– 480.