Probability Theory

Uniqueness result for the BSDE whose generator is monotonic in y and uniformly continuous in $z^{\text {勾 }}$

Un résultat d'unicité pour une équation différentielle stochastique rétrograde dont le générateur g est monotone en y et uniformément continue en z

Sheng-Jun Fan, Long Jiang
College of Sciences, China University of Mining \& Technology, Xuzhou, Jiangsu 221116, PR China

ARTICLE INFO

Article history:

Received 24 January 2009
Accepted after revision 6 October 2009
Available online 22 December 2009
Presented by Paul Malliavin

Abstract

In this Note, we prove that if g is continuous, monotonic and has a general growth in y, g is uniformly continuous in z, and $(g(t, 0,0))_{t \in[0, T]}$ is square integrable, then for each square integrable terminal condition ξ, the one-dimensional backward stochastic differential equation (BSDE) with the generator g has a unique solution. This generalizes some corresponding (one-dimensional) results.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cette Note on démontre que si g est continue, monotone, de croissance quelconque en y, g uniformément continue en z et $\left(g(t, 0,0)_{t \in[0, T]}\right.$ est de carré intégrable, alors pour toute condition finale ξ de carré intégrable, en dimension un, l'équation différentielle stochastique rétrograde (BSDE) de générateur g, a une solution unique. Ce résultat généralise des résultats connus dans le cas de la dimension un.
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following one-dimensional backward stochastic differential equation (BSDE for short):

$$
\begin{equation*}
y_{t}=\xi+\int_{t}^{T} g\left(s, y_{s}, z_{s}\right) \mathrm{d} s-\int_{t}^{T} z_{s} \cdot \mathrm{~d} B_{s}, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

where ξ is a square integral random variable termed the terminal condition, the random function $g(\omega, t, y, z): \Omega \times[0, T] \times$ $\mathbf{R} \times \mathbf{R}^{d} \rightarrow \mathbf{R}$ is progressively measurable for each (y, z), termed the generator of the BSDE (1), and B is a d-dimensional Brownian motion. The solution ($y ., z$.) is a pair of square integrable, adapted processes. The triple $(\xi, T, g$) is called the parameters of the BSDE (1).

[^0]Such equations, in nonlinear case, were firstly introduced by [11], who established an existence and uniqueness result of a solution of the BSDE (1) under the Lipschitz assumption of the generator g. Since then, many efforts have been done in relaxing the Lipschitz hypothesis on g; see, for instance [$10,9,8,1-3$], etc. In particular, under the conditions that g is continuous, monotonic and has a general growth in y, g is Lipschitz continuous in z, and $(g(t, 0,0))_{t \in[0, T]}$ is square integrable, [12] proved the existence and uniqueness of the solution to the BSDE (1). Furthermore, [4] proved the existence of the solution to the $\operatorname{BSDE}(1)$ if the above Lipschitz continuity condition is replaced with the continuity and linear growth condition. Recently, under the conditions that g does not depend on y, g is uniformly continuous in z, and $(g(t, 0))_{t \in[0, T]}$ is a bounded process, [7] obtained a uniqueness result on the solution of the BSDE (1).

Enlightened by these results, this Note proves that if g is continuous, monotonic and has a general growth in y, g is uniformly continuous in z, and the process $(g(t, 0,0))_{t \in[0, T]}$ is square integrable, then for each square integrable terminal condition ξ, the BSDE (1) has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7]. It is worth mentioning that we use a different method from that used in [7], and our result does not need the condition that $(g(t, 0,0))_{t \in[0, T]}$ is a bounded process.

2. Main result

Let (Ω, \mathcal{F}, P) be a probability space carrying a standard d-dimensional Brownian motion $\left(B_{t}\right)_{t \geqslant 0}$. Fix a terminal time $T>0$, let $\left(\mathcal{F}_{t}\right)_{t \geqslant 0}$ be the natural σ-algebra generated by $\left(B_{t}\right)_{t \geqslant 0}$ and assume $\mathcal{F}_{T}=\mathcal{F}$. For every positive integer n, we use $|\cdot|$ to denote norm of Euclidean space \mathbf{R}^{n}. For $t \in[0, T]$, let $L^{2}\left(\Omega, \mathcal{F}_{t}, P\right)$ denote the set of all \mathcal{F}_{t}-measurable random variable ξ such that $\mathbf{E}|\xi|^{2}<+\infty$. Let $L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{n}\right)$ denote the set of \mathcal{F}_{t}-progressively measurable, \mathbf{R}^{n}-valued process $\left\{X_{t}, t \in[0, T]\right\}$ such that

$$
\|X\|_{2} \hat{=}\left(\mathbf{E} \int_{0}^{T}\left|X_{t}\right|^{2} \mathrm{~d} t\right)^{1 / 2}<+\infty
$$

Now, let $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ be a terminal condition, g be the \mathcal{F}_{t}-progressively measurable generator of the BSDE (1). A solution of the $\operatorname{BSDE}(1)$ is a pair of processes $\left(y ., z\right.$.) in $L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{1+d}\right)$ which satisfies BSDE (1) and y. is a continuous process. In this Note, we further assume that g satisfies some of the following assumptions:
(H1) The process $(g(t, 0,0))_{t \in[0, T]} \in L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{1}\right)$.
$(\mathrm{H} 2) \mathrm{d} P \times \mathrm{d} t-a . s .,(y, z) \mapsto f(\omega, t, y, z)$ is continuous.
(H3) g is monotonic in y, i.e., there exists a constant $\mu \geqslant 0$, such that, $\mathrm{d} P \times \mathrm{d} t-a . s$.,

$$
\forall y_{1}, y_{2}, z, \quad\left(g\left(\omega, t, y_{1}, z\right)-g\left(\omega, t, y_{2}, z\right)\right)\left(y_{1}-y_{2}\right) \leqslant \mu\left|y_{1}-y_{2}\right|^{2}
$$

(H4) g has a general growth with respect to y, i.e., $\mathrm{d} P \times \mathrm{d} t-a . s$.,

$$
\forall y, \quad|g(\omega, t, y, 0)| \leqslant|g(\omega, t, 0,0)|+\varphi(|y|)
$$

where $\varphi: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$is an increasing continuous function.
(H5) g is uniformly continuous in z and uniform with respect to (ω, t, y), i.e., there exists a continuous, nondecreasing function $\phi(\cdot)$ from \mathbf{R}_{+}to itself with at most linear growth and $\phi(0)=0$ such that $\mathrm{d} P \times \mathrm{d} t-a . s$. ,

$$
\forall y, z_{1}, z_{2}, \quad\left|g\left(\omega, t, y, z_{1}\right)-g\left(\omega, t, y, z_{2}\right)\right| \leqslant \phi\left(\left|z_{1}-z_{2}\right|\right)
$$

Here and henceforth we denote the constant of linear growth for ϕ by A, i.e., $0 \leqslant \phi(x) \leqslant A(x+1)$ for all $x \in \mathbf{R}_{+}$(see [5] for details).
$\left(\mathrm{H}^{\prime}\right) \mathrm{g}$ is Lipschitz continuous in z and uniform with respect to $(\omega, t, y$), i.e., there exists a constant $C \geqslant 0$ such that $\mathrm{d} P \times \mathrm{d} t-a . s .$,

$$
\forall y, z_{1}, z_{2}, \quad\left|g\left(\omega, t, y, z_{1}\right)-g\left(\omega, t, y, z_{2}\right)\right| \leqslant C\left|z_{1}-z_{2}\right|
$$

Remark 1. Under the conditions of (H 1)-(H 4) and $\left(\mathrm{H}^{\prime}\right)$, [12] established the existence and uniqueness of the solution to the BSDE with the generator g. This Note aims at establishing the existence and uniqueness under the conditions of (H1)-(H5). Obviously, (H5') can imply (H5).

In the following, we will put forward and prove our main result that if g is continuous, monotonic and has a general growth in y, g is uniformly continuous in z, and the process $(g(t, 0,0))_{t \in[0, T]}$ is square integrable, then the BSDE with the generator g has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7]. Rigorously, we have:

Theorem 1. Assume that g satisfies (H1)-(H5). Then for each $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$, the BSDE with parameters (ξ, T, g) has a unique solution (y., z.).

Proof. Existence: Since g satisfies (H4) and (H5), then $\mathrm{d} P \times \mathrm{d} t-a . s$., for each $(y, z) \in \mathbf{R}^{1+d}$ we have

$$
\begin{aligned}
|g(\omega, t, y, z)| & \leqslant|g(\omega, t, y, z)-g(\omega, t, y, 0)|+|g(\omega, t, y, 0)| \\
& \leqslant \phi(|z|)+|g(\omega, t, 0,0)|+\varphi(|y|) \\
& \leqslant|g(\omega, t, 0,0)|+A+\varphi(|y|)+A|z|
\end{aligned}
$$

Thus the existence of the solution to the BSDE with parameters (ξ, T, g) follows from Theorem 4.1 in [4].
Uniqueness: Assume that $\left(y ., z\right.$.) and (y^{\prime}, z^{\prime}) be two solutions to the BSDE with parameters (ξ, T, g) in $L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{1+d}\right)$. Let $\hat{y} .=y .-y^{\prime}, \hat{z} .=z .-z^{\prime}$. then we have

$$
\hat{y}_{t}=\int_{t}^{T}\left[g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right] \mathrm{d} s-\int_{t}^{T} \hat{z}_{s} \cdot \mathrm{~d} B_{s}, \quad t \in[0, T]
$$

Using the Tanaka-Meyer formula (see [6]), one gets that for each $t \in[0, T]$,

$$
\begin{align*}
\left|\hat{y}_{t}\right| & =\int_{t}^{T} \frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0}\left[g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right] \mathrm{d} s-\left(L_{T}^{0}-L_{t}^{0}\right)-\int_{t}^{T} \frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0} \hat{z}_{s} \cdot \mathrm{~d} B_{s} \\
& =\int_{t}^{T}\left[\mu\left|\hat{y}_{s}\right|+1_{\hat{y}_{s} \neq 0} \phi\left(\left|\hat{z}_{s}\right|\right)\right] \mathrm{d} s+\left(V_{T}-V_{t}\right)-\int_{t}^{T} \frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0} \hat{z}_{s} \cdot \mathrm{~d} B_{s} \tag{2}
\end{align*}
$$

where L_{t}^{0} is the local time of \hat{y}_{t} at 0 and

$$
V_{t}=-\int_{0}^{t}\left[\left(\mu\left|\hat{y}_{s}\right|+1_{\hat{y}_{s} \neq 0} \phi\left(\left|\hat{z}_{s}\right|\right)\right)-\frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0}\left(g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right)\right] \mathrm{d} s-L_{t}^{0}
$$

Thanks to (H3) and (H5), we know that

$$
\begin{aligned}
\hat{y}_{s}\left[g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right] & =\hat{y}_{s}\left[g\left(s, y_{s}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}\right)\right]+\hat{y}_{s}\left[g\left(s, y_{s}^{\prime}, z_{s}\right)-g\left(s, y_{s}^{\prime}, z_{s}^{\prime}\right)\right] \\
& \leqslant \mu\left|\hat{y}_{s}\right|^{2}+\left|\hat{y}_{s}\right| \phi\left(\left|\hat{z}_{s}\right|\right) .
\end{aligned}
$$

This inequality combining that L_{t}^{0} is a continuous increasing process yields that $\left(V_{t}\right)_{t \in[0, T]}$ is a continuous decreasing process with $V_{0}=0$. Moreover, from (2) one also knows that

$$
V_{T}=\hat{y}_{0}-\int_{0}^{T}\left[\mu\left|\hat{y}_{s}\right|+1_{\hat{y}_{s} \neq 0} \phi\left(\left|\hat{z}_{s}\right|\right)\right] \mathrm{d} s+\int_{0}^{T} \frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0} \hat{z}_{s} \cdot \mathrm{~d} B_{s}
$$

then recalling that $\phi(\cdot)$ increases at most linearly, from Hölder inequality one has

$$
\begin{equation*}
\mathbf{E} \sup _{0 \leqslant t \leqslant T}\left|V_{t}\right|^{2}=\mathbf{E}\left|V_{T}\right|^{2} \leqslant 4\left|\hat{y}_{0}\right|^{2}+8 T \mathbf{E} \int_{0}^{T}\left[\mu^{2}\left|\hat{y}_{s}\right|^{2}+\left(A\left|\hat{z}_{s}\right|+A\right)^{2}\right] \mathrm{d} s+2 \mathbf{E} \int_{0}^{T}\left|\hat{z}_{s}\right|^{2} \mathrm{~d} s<+\infty \tag{3}
\end{equation*}
$$

In the following, for each $n \geqslant 1$, from [11], one knows that the following BSDE has a unique solution $\left(Y_{.}^{n}, Z_{.}^{n}\right) \in$ $L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{1+d}\right)$:

$$
\begin{equation*}
Y_{t}^{n}=\int_{t}^{T}\left[\mu Y_{s}^{n}+(n+2 A)\left|Z_{s}^{n}\right|+\phi\left(\frac{2 A}{n+2 A}\right)\right] \mathrm{d} s-\int_{t}^{T} Z_{s}^{n} \cdot \mathrm{~d} B_{s}, \quad t \in[0, T] \tag{4}
\end{equation*}
$$

Recalling that $\phi(\cdot)$ is a nondecreasing function from \mathbf{R}_{+}to itself with at most linear growth, one can prove that for each $n \in \mathbf{N}$,

$$
\begin{equation*}
\phi(x) \leqslant(n+2 A) x+\phi\left(\frac{2 A}{n+2 A}\right) \tag{5}
\end{equation*}
$$

holds true for each $x \in \mathbf{R}_{+}$. In fact, if $0 \leqslant x \leqslant \frac{2 A}{n+2 A}$, the conclusion is obvious considering $\phi(\cdot)$ is nondecreasing. And, if $\frac{2 A}{n+2 A}<x<1$, we have $(n+2 A) x>2 A=A+A>A x+A \geqslant \phi(x)$. Finally, in the case of $x \geqslant 1$, we also have $(n+2 A) x>$ $2 A x=A x+A x \geqslant A x+A \geqslant \phi(x)$. Therefore, for each $n \geqslant 1$, from (5) we have

$$
\begin{align*}
g^{\prime}(s) & :=\mu\left|\hat{y}_{s}\right|+1_{\hat{y}_{s} \neq 0} \phi\left(\left|\hat{z}_{s}\right|\right) \leqslant \mu\left|\hat{y}_{s}\right|+1_{\hat{y}_{s} \neq 0}(n+2 A)\left|\hat{z}_{s}\right|+\phi\left(\frac{2 A}{n+2 A}\right) \\
& =\mu\left(\left|\hat{y}_{s}\right|\right)+(n+2 A)\left|\frac{\hat{y}_{s}}{\left|\hat{y}_{s}\right|} 1_{\hat{y}_{s} \neq 0} \hat{z}_{s}\right|+\phi\left(\frac{2 A}{n+2 A}\right) \tag{6}
\end{align*}
$$

Obviously, $g^{\prime}(\cdot) \in L_{\mathcal{F}}^{2}\left(0, T ; \mathbf{R}^{1}\right)$. Thus, considering inequalities (3) and (6), and the fact that $\left(0-V_{t}\right)_{t \in[0, T]}$ is a continuous increasing process, by using Comparison Theorem 1.3 in [13] to compare the solution of the $\operatorname{BSDE}(2)$ with the one of the $\operatorname{BSDE}(4)$, we know that for each $n \geqslant 1$ and $t \in[0, T],\left|\hat{y}_{t}\right| \leqslant Y_{t}^{n}, \mathrm{~d} P-a . s$.

On the other hand, one may verify directly that for each $t \in[0, T]$,

$$
Y_{t}^{n}=\frac{1}{\mu}\left(e^{\mu(T-t)}-1\right) \phi\left(\frac{2 A}{n+2 A}\right) \quad \text { and } \quad Z_{t}^{n} \equiv 0
$$

Thus since $\phi(\cdot)$ is a continuous function and $\phi(0)=0$, we have $\left|\hat{y}_{t}\right| \leqslant \lim _{n \rightarrow \infty} Y_{t}^{n}=0, \mathrm{~d} P-a . s$.
Hence, for each $t \in[0, T]$ we have, $y_{t}=y_{t}^{\prime}, \mathrm{d} P-a . s$. That is to say, the solution to the BSDE with parameters (ξ, T, g) is unique. The proof of Theorem 1 is complete.

Remark 2. From the proof of Theorem 1, one can see that we need only the monotonicity condition in y (see (H3)) and uniform continuity condition in z (see (H5)) to ensure the uniqueness of the solution of the BSDE:

From Theorem 1 one can easily obtain the following Corollaries which can be regarded as the extensions of the corresponding (one-dimensional) results in [7,11].

Corollary 1. Assume that g satisfies (H1) and (H5). Moreover, let g be independent of y. Then for each $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$, the BSDE with parameters (ξ, T, g) has a unique solution.

Corollary 2. Assume that g satisfies (H1) and (H5). Moreover, let g be Lipschitz continuous in y. Then for each $\xi \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$, the BSDE with parameters (ξ, T, g) has a unique solution.

Acknowledgement

The authors would like to thank the referee for his/her careful reading and helpful suggestions.

References

[1] K. Bahlali, Backward stochastic differential equations with locally Lipschitz coefficient, C. R. Acad. Sci. Paris, Ser. I 331 (2001) 481-486.
[2] Ph. Briand, B. Delyon, Y. Hu, E. Pardoux, L. Stoica, L^{p} solutions of backward stochastic differential equations, Stochastic Processes and Their Applications 108 (2003) 109-129.
[3] Ph. Briand, Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probability Theory and Related Fields 141 (2008) 543-567.
[4] Ph. Briand, J.P. Lepetier, J. San Martin, One-dimensional BSDE's whose coefficient is monotonic in y and non-Lipschitz in z, Bernoulli 13 (1) (2007) 80-91.
[5] M.G. Crandall, Viscosity solutions - a primer, in: I. Capuzzo Dolcetta, P.L. Lions (Eds.), Viscosity Solutions and Applications, in: Lecture Notes in Mathematics, vol. 1660, Springer, Berlin, 1997, pp. 1-43.
[6] S. He, J. Wang, J. Yan, Semimartingal Theory and Stochastic Calculus, Science Press and CRC Press, Inc., 1992.
[7] G. Jia, A uniqueness theorem for the solution of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I 346 (2008) $439-444$.
[8] M. Kobylanski, Backward stochastic differential equations and partial equations with quadratic growth, Ann. Probab. 28 (2000) $259-276$.
[9] J.P. Lepetier, J. San Martin, Backward stochastic differential equations with continuous coefficient, Statistics and Probability Letters 32 (1997) 425-430.
[10] X. Mao, Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process and Their Applications 58 (1995) 281-292.
[11] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Letters 14 (1990) 55-61.
[12] E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in: Nonlinear Analysis, Differential Equations and Control, Montreal, QC, 1998, Kluwer Academic Publishers, Dordrecht, 1999, pp. 503-549.
[13] S. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type, Probability Theory and Related Fields 113 (1999) 473-499.

[^0]: 解 Supported by the National Natural Science Foundation of China (No. 10671205), National Basic Research Program of China (No. 2007CB814901), Youth Foundation of China University of Mining \& Technology (Nos. 2006 A041 and 2007A029) and Qing Lan Project.

 E-mail addresses: f_s_j@126.com (S.-J. Fan), jianglong365@hotmail.com (L. Jiang).
 1631-073X/\$ - see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

