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In this Note, we prove that if g is continuous, monotonic and has a general growth in
y, g is uniformly continuous in z, and (g(t,0,0))t∈[0,T ] is square integrable, then for
each square integrable terminal condition ξ , the one-dimensional backward stochastic
differential equation (BSDE) with the generator g has a unique solution. This generalizes
some corresponding (one-dimensional) results.
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r é s u m é

Dans cette Note on démontre que si g est continue, monotone, de croissance quelconque
en y, g uniformément continue en z et (g(t,0,0))t∈[0,T ] est de carré intégrable, alors
pour toute condition finale ξ de carré intégrable, en dimension un, l’équation différentielle
stochastique rétrograde (BSDE) de générateur g, a une solution unique. Ce résultat
généralise des résultats connus dans le cas de la dimension un.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following one-dimensional backward stochastic differential equation (BSDE for short):

yt = ξ +
T∫

t

g(s, ys, zs)ds −
T∫

t

zs · dBs, t ∈ [0, T ], (1)

where ξ is a square integral random variable termed the terminal condition, the random function g(ω, t, y, z) : Ω ×[0, T ]×
R × Rd → R is progressively measurable for each (y, z), termed the generator of the BSDE (1), and B is a d-dimensional
Brownian motion. The solution (y·, z·) is a pair of square integrable, adapted processes. The triple (ξ, T , g) is called the
parameters of the BSDE (1).
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Such equations, in nonlinear case, were firstly introduced by [11], who established an existence and uniqueness result
of a solution of the BSDE (1) under the Lipschitz assumption of the generator g . Since then, many efforts have been done
in relaxing the Lipschitz hypothesis on g; see, for instance [10,9,8,1–3], etc. In particular, under the conditions that g
is continuous, monotonic and has a general growth in y, g is Lipschitz continuous in z, and (g(t,0,0))t∈[0,T ] is square
integrable, [12] proved the existence and uniqueness of the solution to the BSDE (1). Furthermore, [4] proved the existence
of the solution to the BSDE (1) if the above Lipschitz continuity condition is replaced with the continuity and linear growth
condition. Recently, under the conditions that g does not depend on y, g is uniformly continuous in z, and (g(t,0))t∈[0,T ]
is a bounded process, [7] obtained a uniqueness result on the solution of the BSDE (1).

Enlightened by these results, this Note proves that if g is continuous, monotonic and has a general growth in y, g is
uniformly continuous in z, and the process (g(t,0,0))t∈[0,T ] is square integrable, then for each square integrable terminal
condition ξ , the BSDE (1) has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7].
It is worth mentioning that we use a different method from that used in [7], and our result does not need the condition
that (g(t,0,0))t∈[0,T ] is a bounded process.

2. Main result

Let (Ω, F , P ) be a probability space carrying a standard d-dimensional Brownian motion (Bt)t�0. Fix a terminal time
T > 0, let (Ft)t�0 be the natural σ -algebra generated by (Bt)t�0 and assume FT = F . For every positive integer n, we use
| · | to denote norm of Euclidean space Rn . For t ∈ [0, T ], let L2(Ω, Ft , P ) denote the set of all Ft -measurable random variable
ξ such that E|ξ |2 < +∞. Let L2

F (0, T ;Rn) denote the set of Ft -progressively measurable, Rn-valued process {Xt, t ∈ [0, T ]}
such that

‖X‖2 =̂
(

E

T∫
0

|Xt |2 dt

)1/2

< +∞.

Now, let ξ ∈ L2(Ω, FT , P ) be a terminal condition, g be the Ft -progressively measurable generator of the BSDE (1).
A solution of the BSDE (1) is a pair of processes (y·, z·) in L2

F (0, T ;R1+d) which satisfies BSDE (1) and y· is a continuous
process. In this Note, we further assume that g satisfies some of the following assumptions:

(H1) The process (g(t,0,0))t∈[0,T ] ∈ L2
F (0, T ;R1).

(H2) dP × dt − a.s., (y, z) �→ f (ω, t, y, z) is continuous.
(H3) g is monotonic in y, i.e., there exists a constant μ � 0, such that, dP × dt − a.s.,

∀y1, y2, z,
(

g(ω, t, y1, z) − g(ω, t, y2, z)
)
(y1 − y2) � μ|y1 − y2|2.

(H4) g has a general growth with respect to y, i.e., dP × dt − a.s.,

∀y,
∣∣g(ω, t, y,0)

∣∣ �
∣∣g(ω, t,0,0)

∣∣ + ϕ
(|y|),

where ϕ : R+ → R+ is an increasing continuous function.
(H5) g is uniformly continuous in z and uniform with respect to (ω, t, y), i.e., there exists a continuous, nondecreasing

function φ(·) from R+ to itself with at most linear growth and φ(0) = 0 such that dP × dt − a.s.,

∀y, z1, z2,
∣∣g(ω, t, y, z1) − g(ω, t, y, z2)

∣∣ � φ
(|z1 − z2|

)
.

Here and henceforth we denote the constant of linear growth for φ by A, i.e., 0 � φ(x) � A(x + 1) for all x ∈ R+ (see
[5] for details).

(H5′) g is Lipschitz continuous in z and uniform with respect to (ω, t, y), i.e., there exists a constant C � 0 such that
dP × dt − a.s.,

∀y, z1, z2,
∣∣g(ω, t, y, z1) − g(ω, t, y, z2)

∣∣ � C |z1 − z2|.

Remark 1. Under the conditions of (H1)–(H4) and (H5′), [12] established the existence and uniqueness of the solution to the
BSDE with the generator g . This Note aims at establishing the existence and uniqueness under the conditions of (H1)–(H5).
Obviously, (H5′) can imply (H5).

In the following, we will put forward and prove our main result that if g is continuous, monotonic and has a general
growth in y, g is uniformly continuous in z, and the process (g(t,0,0))t∈[0,T ] is square integrable, then the BSDE with the
generator g has a unique solution, which generalizes the corresponding (one-dimensional) results in [11,12,7]. Rigorously,
we have:
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Theorem 1. Assume that g satisfies (H1)–(H5). Then for each ξ ∈ L2(Ω, FT , P ), the BSDE with parameters (ξ, T , g) has a unique
solution (y·, z·).

Proof. Existence: Since g satisfies (H4) and (H5), then dP × dt − a.s., for each (y, z) ∈ R1+d we have∣∣g(ω, t, y, z)
∣∣ �

∣∣g(ω, t, y, z) − g(ω, t, y,0)
∣∣ + ∣∣g(ω, t, y,0)

∣∣
� φ

(|z|) + ∣∣g(ω, t,0,0)
∣∣ + ϕ

(|y|)
�

∣∣g(ω, t,0,0)
∣∣ + A + ϕ

(|y|) + A|z|.
Thus the existence of the solution to the BSDE with parameters (ξ, T , g) follows from Theorem 4.1 in [4].

Uniqueness: Assume that (y·, z·) and (y′·, z′·) be two solutions to the BSDE with parameters (ξ, T , g) in L2
F (0, T ;R1+d).

Let ŷ· = y· − y′·, ẑ· = z· − z′· then we have

ŷt =
T∫

t

[
g(s, ys, zs) − g

(
s, y′

s, z′
s

)]
ds −

T∫
t

ẑs · dBs, t ∈ [0, T ].

Using the Tanaka–Meyer formula (see [6]), one gets that for each t ∈ [0, T ],

| ŷt | =
T∫

t

ŷs

| ŷs|1 ŷs 	=0
[

g(s, ys, zs) − g
(
s, y′

s, z′
s

)]
ds − (

L0
T − L0

t

) −
T∫

t

ŷs

| ŷs|1 ŷs 	=0 ẑs · dBs

=
T∫

t

[
μ| ŷs| + 1 ŷs 	=0φ

(|ẑs|
)]

ds + (V T − Vt) −
T∫

t

ŷs

| ŷs|1 ŷs 	=0 ẑs · dBs, (2)

where L0
t is the local time of ŷt at 0 and

Vt = −
t∫

0

[(
μ| ŷs| + 1 ŷs 	=0φ

(|ẑs|
)) − ŷs

| ŷs|1 ŷs 	=0
(

g(s, ys, zs) − g
(
s, y′

s, z′
s

))]
ds − L0

t .

Thanks to (H3) and (H5), we know that

ŷs
[

g(s, ys, zs) − g
(
s, y′

s, z′
s

)] = ŷs
[

g(s, ys, zs) − g
(
s, y′

s, zs
)] + ŷs

[
g
(
s, y′

s, zs
) − g

(
s, y′

s, z′
s

)]
� μ| ŷs|2 + | ŷs|φ

(|ẑs|
)
.

This inequality combining that L0
t is a continuous increasing process yields that (Vt)t∈[0,T ] is a continuous decreasing process

with V 0 = 0. Moreover, from (2) one also knows that

V T = ŷ0 −
T∫

0

[
μ| ŷs| + 1 ŷs 	=0φ

(|ẑs|
)]

ds +
T∫

0

ŷs

| ŷs|1 ŷs 	=0 ẑs · dBs,

then recalling that φ(·) increases at most linearly, from Hölder inequality one has

E sup
0�t�T

|Vt |2 = E|V T |2 � 4| ŷ0|2 + 8T E

T∫
0

[
μ2| ŷs|2 + (

A|ẑs| + A
)2]

ds + 2E

T∫
0

|ẑs|2 ds < +∞. (3)

In the following, for each n � 1, from [11], one knows that the following BSDE has a unique solution (Y n· , Zn· ) ∈
L2

F (0, T ;R1+d):

Y n
t =

T∫
t

[
μY n

s + (n + 2A)
∣∣Zn

s

∣∣ + φ

(
2A

n + 2A

)]
ds −

T∫
t

Zn
s · dBs, t ∈ [0, T ]. (4)

Recalling that φ(·) is a nondecreasing function from R+ to itself with at most linear growth, one can prove that for each
n ∈ N,

φ(x) � (n + 2A)x + φ

(
2A

)
(5)
n + 2A
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holds true for each x ∈ R+ . In fact, if 0 � x � 2A
n+2A , the conclusion is obvious considering φ(·) is nondecreasing. And, if

2A
n+2A < x < 1, we have (n + 2A)x > 2A = A + A > Ax + A � φ(x). Finally, in the case of x � 1, we also have (n + 2A)x >

2Ax = Ax + Ax � Ax + A � φ(x). Therefore, for each n � 1, from (5) we have

g′(s) := μ| ŷs| + 1 ŷs 	=0φ
(|ẑs|

)
� μ| ŷs| + 1 ŷs 	=0(n + 2A)|ẑs| + φ

(
2A

n + 2A

)

= μ
(| ŷs|

) + (n + 2A)

∣∣∣∣ ŷs

| ŷs|1 ŷs 	=0 ẑs

∣∣∣∣ + φ

(
2A

n + 2A

)
. (6)

Obviously, g′(·) ∈ L2
F (0, T ;R1). Thus, considering inequalities (3) and (6), and the fact that (0 − Vt)t∈[0,T ] is a continuous

increasing process, by using Comparison Theorem 1.3 in [13] to compare the solution of the BSDE (2) with the one of the
BSDE (4), we know that for each n � 1 and t ∈ [0, T ], | ŷt | � Y n

t , dP − a.s.
On the other hand, one may verify directly that for each t ∈ [0, T ],

Y n
t = 1

μ

(
eμ(T −t) − 1

)
φ

(
2A

n + 2A

)
and Zn

t ≡ 0.

Thus since φ(·) is a continuous function and φ(0) = 0, we have | ŷt | � limn→∞ Y n
t = 0, dP − a.s.

Hence, for each t ∈ [0, T ] we have, yt = y′
t , dP − a.s. That is to say, the solution to the BSDE with parameters (ξ, T , g) is

unique. The proof of Theorem 1 is complete. �
Remark 2. From the proof of Theorem 1, one can see that we need only the monotonicity condition in y (see (H3)) and
uniform continuity condition in z (see (H5)) to ensure the uniqueness of the solution of the BSDE:

From Theorem 1 one can easily obtain the following Corollaries which can be regarded as the extensions of the corre-
sponding (one-dimensional) results in [7,11].

Corollary 1. Assume that g satisfies (H1) and (H5). Moreover, let g be independent of y. Then for each ξ ∈ L2(Ω, FT , P ), the BSDE
with parameters (ξ, T , g) has a unique solution.

Corollary 2. Assume that g satisfies (H1) and (H5). Moreover, let g be Lipschitz continuous in y. Then for each ξ ∈ L2(Ω, FT , P ), the
BSDE with parameters (ξ, T , g) has a unique solution.
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