Algebraic Geometry

On the vector bundles over rationally connected varieties

Indranil Biswasa, João Pedro P. dos Santosb

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
b Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France

Received 28 June 2009; accepted after revision 2 September 2009
Available online 19 September 2009
Presented by Jean-Pierre Demailly

Abstract

Let X be a rationally connected smooth projective variety defined over \mathbb{C} and $E \to X$ a vector bundle such that for every morphism $\gamma : \mathbb{C}P^1 \to X$, the pullback $\gamma^* E$ is trivial. We prove that E is trivial. Using this we show that if $\gamma^* E$ is isomorphic to $L(\gamma) \oplus r$ for all γ of the above type, where $L(\gamma) \to \mathbb{C}P^1$ is some line bundle, then there is a line bundle ξ over X such that $E = \xi \oplus r$.

1. Introduction

Let E be a holomorphic vector bundle over a connected complex projective manifold X. If for every pair of the form (C, γ), where C is a compact connected Riemann surface, and $\gamma : C \to X$ is a holomorphic map, the pullback $\gamma^* E$ is semistable, then it is known that E is semistable, and $c_i(\text{End}(E)) = 0$ for all $i \geq 1$ [3, pp. 3–4, Theorem 1.2]. Our aim here is to show that if X is rationally connected, then the above conclusion remains valid even if we insert in the condition that C is a rational curve. We recall that a complex projective variety X is said to be \textit{rationally connected} if any two points of X can be joined by an irreducible rational curve on X; see [9, Theorem 2.1] for equivalent conditions. We prove the following theorem:

\textbf{Theorem 1.1.} Let E be a vector bundle of rank r over a rationally connected smooth projective variety X defined over \mathbb{C} such that for every morphism $\gamma : \mathbb{C}P^1 \to X$, the pullback $\gamma^* E$ is trivial. We then have $E = \xi \oplus r$. To cite this article: I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Des fibrés vectoriels sur les variétés rationnellement connexes. Soit X une variété rationnellement connexe sur \mathbb{C} et soit $E \to X$ un fibré vectoriel tel que, pour tout morphisme $\gamma : \mathbb{C}P^1 \to X$, le fibré $\gamma^* E$ est trivial. Nous montrons que E est trivial. Nous en déduisons que si, pour tout γ comme avant, $\gamma^* E$ est isomorphe à $L(\gamma)^{\oplus r}$, où $L(\gamma) \to \mathbb{C}P^1$ est un fibré en droites, alors il existe un fibré en droites ξ sur X et un isomorphisme $E \cong \xi^{\oplus r}$. Pour citer cet article : I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
\(\gamma : \mathbb{C}P^1 \rightarrow X, \)

the pullback \(\gamma^* E \) is isomorphic to \(L(\gamma)^{\oplus r} \) for some line bundle \(L(\gamma) \rightarrow \mathbb{C}P^1 \). Then there is a line bundle \(\xi \) over \(X \) such that \(E = \xi^{\oplus r} \).

In [1] this was proved under the extra assumption that \(\text{Pic}(X) = \mathbb{Z} \) (see [1, p. 211, Proposition 1.2]).

Theorem 1.1 is deduced from the following proposition (see Proposition 2.1):

Proposition 1.2. Let \(X \) be as in Theorem 1.1. Let \(E \rightarrow X \) be a vector bundle such that for every morphism \(\gamma : \mathbb{C}P^1 \rightarrow X \), the pullback \(\gamma^* E \) is trivial. Then \(E \) itself is trivial.

The condition in Theorem 1.1 that \(\gamma^* E \) is of the form \(L(\gamma)^{\oplus r} \) can be replaced by an equivalent condition which says that \(\gamma^* E \) is semistable (see Corollary 2.3).

2. Criterion for triviality

Let \(X \) be a rationally connected smooth projective variety defined over \(\mathbb{C} \). Let \(E \rightarrow X \) be a vector bundle.

Proposition 2.1. Assume that for every morphism

\[\gamma : \mathbb{C}P^1 \rightarrow X \]

the vector bundle \(\gamma^* E \rightarrow \mathbb{C}P^1 \) is trivial. Then \(E \) itself is trivial.

Proof. Let \(x \in X \) be a closed point. There is a smooth family of rational curves on \(X \)

\[
\begin{array}{c}
Z \\
\sigma
\end{array} \xrightarrow{\phi} X
\]

(1)

where

1. \(T \) is open in \(\text{Mor}(\mathbb{C}P^1, X; (0 : 1) \mapsto x) \) (hence \(T \) is quasiprojective),
2. \(f \circ \sigma = \text{Id}_T \),
3. \(\phi \) is dominant, and
4. \(\phi(\sigma(t)) = x \) for all \(t \in T \).

(See [4, Section 3], [8, Theorem 3].)

Let

\[\beta := [\phi(f^{-1}(t))] \in H_2(X, \mathbb{Z}) \]

be the homology class, where \(t \in T(\mathbb{C}) \). Let \(\overline{M}_{0,1}(X, \beta) \) be the moduli stack classifying families of stable maps from 1-pointed genus zero curves to \(X \) which represent the class \(\beta \). (We are following the terminology of [5].) We know that \(\overline{M}_{0,1}(X, \beta) \) is a proper Deligne–Mumford stack [2, p. 27, Theorem 3.14].

Let

\[
\rho : T \rightarrow \overline{M}_{0,1}(X, \beta)
\]

(2)

be the morphism associated to the family in (1).

By “Chow’s Lemma” [10, p. 154, Corollaire 16.6.1], there exists a projective \(\mathbb{C} \)-scheme \(Y \) together with a proper surjective morphism \(\psi : Y \rightarrow \overline{M}_{0,1}(X, \beta) \). There exists a Cartesian diagram

\[
\begin{array}{c}
T_1 \xrightarrow{\rho_1} Y \\
\psi_1 \\
T \xrightarrow{\rho} \overline{M}_{0,1}(X, \beta)
\end{array}
\]
where \(T_1 \) is a scheme and \(\psi_1 \) is proper and surjective. This last assertion is justified by the fact that the diagonal of a Deligne–Mumford stack is schematic ([10, p. 26, Lemme 4.2] and [10, p. 21, Corollaire 3.13]). As \(T \) is separated (it is open in \(\text{Mor}(\mathbb{CP}^1, X) \)), we can apply Nagata’s Theorem [11, p. 106, Théorème 3.2] to find a proper \(\mathbb{C} \)-scheme \(\overline{T}_1 \) and a schematically dense open immersion \(i : T_1 \hookrightarrow \overline{T}_1 \). Eliminating the “indeterminacy locus” (see e.g. [11, pp. 99–100]), we can find a blow-up

\[
\xi : \overline{T} \twoheadrightarrow \overline{T}_1
\]

whose center is disjoint from \(T_1 \) and a morphism

\[
\phi : \overline{T} \rightarrow Y
\]

which extends \(\rho_1 : T_1 \rightarrow Y \). The composition \(\psi \circ \phi : \overline{T} \rightarrow \overline{\mathcal{M}}_{0,1}(X, \beta) \) represents a family of 1-pointed genus zero stable maps

\[
\begin{array}{ccc}
\overline{T} & \xrightarrow{\phi} & X \\
\Downarrow \rho & & \\
\overline{T}_1 & \xrightarrow{\phi_1} & X
\end{array}
\]

(3)

whose pullback via \(i : T_1 \hookrightarrow \overline{T} \) is the pullback of the family in (1) via \(\psi_1 \). Clearly \(\phi \) is dominant (hence surjective) and \(\phi \circ \sigma \) is a constant morphism. Note that, without loss of generality, we can assume \(\overline{T} \) to be reduced.

We recall that the pullback of \(E \) by any map from \(\mathbb{CP}^1 \) is trivial. Consequently, for any point \(t \in \overline{T}(\mathbb{C}) \), the restriction of \(\overline{E} := \phi^*E \) to the curve \(\overline{T}^{-1}(t) \) — which is a tree of \(\mathbb{CP}^1 \) — is trivial. Therefore, \(\overline{E} \) descends to \(\overline{T} \). More precisely, the direct image \(\overline{f}_* \overline{E} \) is a vector bundle on \(\overline{T} \), and the canonical arrow

\[
\overline{f}_* \overline{E} \longrightarrow E
\]

(4)

is an isomorphism [12, §5]. The homomorphism in (4) is injective because any section of a trivial vector bundle, over a connected projective scheme, that vanishes at one point actually vanishes identically; the homomorphism is surjective also because \(\overline{E}|_{\overline{T}^{-1}(t)} \) is trivial for all \(t \). We also note that the image of (4) by \(\sigma^* \) defines an isomorphism between \(\sigma^* \overline{E} \) and \(\overline{f}_* \overline{E} \). Therefore, using (4),

\[
\overline{f}_* \sigma^* \overline{E} = E.
\]

(5)

Now from the condition that \(\phi \circ \sigma \) is a constant map it follows immediately that \(\sigma^* \overline{E} = \sigma^* \overline{E} \) is a trivial vector bundle. Consequently, using (5) we conclude that the vector bundle \(\phi^*E \) is trivial.

Since \(\phi \) is a surjective and proper morphism, and \(\phi^*E \) is trivial, we conclude that the Chern class \(c_i(E) \) is numerically equivalent to zero for all \(i \geq 1 \).

Next we will show that the vector bundle \(E \) is semistable.

Let \(C \hookrightarrow X \) be a smooth irreducible (proper) curve on \(X \), and let \(C' \hookrightarrow \overline{Z} \) be an irreducible curve such that \(\phi(C') = C \). (The curve \(C' \) can be constructed as the closure of a closed point of the generic fiber of \(\phi^{-1}(C) \twoheadrightarrow C \).)

Since the pullback of \(E|_C \) to \(C' \) is trivial, so is the pullback of \(E|_C \) to the normalization of \(C' \). Consequently, the vector bundle \(E|_C \) is semistable of degree zero. This allows us to conclude that \(E \) is semistable with respect to any chosen polarization on \(X \).

Since \(E \) is semistable, and both \(c_1(E) \) and \(c_2(E) \) are numerically equivalent to zero, a theorem of Simpson says that \(E \) admits a flat connection (see [13, p. 40, Corollary 3.10]). On the other hand, \(X \) is simply connected because it is rationally connected ([4, p. 545, Theorem 3.5], [7, p. 362, Proposition 2.3]). Therefore, any flat vector bundle on \(X \) is trivial. In particular, the vector bundle \(E \) is trivial. \(\square \)

As before, let \(E \) be a vector bundle over the rationally connected variety \(X \). Let \(r \) be the rank of \(E \).

Theorem 2.2. Assume that for every morphism

\[
\gamma : \mathbb{CP}^1 \rightarrow X,
\]

there is a line bundle \(L(\gamma) \rightarrow \mathbb{CP}^1 \) such that \(\gamma^*E = (\gamma^*E)^{\oplus r} \). Then there is a line bundle \(\xi \rightarrow X \) such that \(E = \xi^{\oplus r} \).
Proof. The above condition on $\gamma^* E$ and Proposition 2.1 ensure that the vector bundle $\text{End}(E)$ is trivial. This implies that, for any $x_0 \in X(\mathbb{C})$, the evaluation map

$$H^0(X, \text{End}(E)) \longrightarrow \text{End}_\mathbb{C}(E(x_0))$$

(6)

is an isomorphism; let $A : E \rightarrow E$ be an isomorphism such that all the eigenvalues $\lambda_1, \ldots, \lambda_r$ of $A(x_0)$ are distinct. As the eigenvalues of $A(x)$ are independent of $x \in X$, it follows that E is isomorphic to the direct sum of the line subbundles

$$L_i := \ker(\lambda_i - A) \subseteq E, \quad 1 \leq i \leq r.$$

Since the evaluation map in (6) is an isomorphism, we have

$$\dim H^0(X, L_i \otimes L_j^*) \leq 1$$

for all $i, j \in [1, r]$. Note that if $H^0(X, L_i \otimes L_j^*) = 0$ for some i, j, then

$$\dim H^0(X, \text{End}(E)) < r^2,$$

which contradicts the fact that $\text{End}(E)$ is trivial. For $s_{ij} \in H^0(X, L_i \otimes L_j^*) \setminus \{0\}, i, j \in [1, r]$, the composition $s_{ij} \circ s_{ji}$ is an automorphism of L_i, hence each s_{ij} is an isomorphism. This completes the proof of the theorem. \(\square\)

A theorem due to Grothendieck says that any vector bundle over $\mathbb{C}P^1$ decomposes into a direct sum of line bundles [6, p. 126, Théorème 2.1]. Therefore, Theorem 2.2 has the following corollary:

Corollary 2.3. If for every morphism $\gamma : \mathbb{C}P^1 \rightarrow X$, the vector bundle $\gamma^* E$ is semistable, then there is a line bundle $\zeta \rightarrow X$ such that $E = \zeta^{\oplus r}$.

Acknowledgements

We thank N. Fakhruddin for useful comments. We thank Carolina Araujo for pointing out [1].

References