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Abstract

We prove that every fundamental solution of an elliptic linear partial differential operator of the second order with analytic
coefficients and simple complex characteristics in an open set Ω ⊂ R

n can be continued at least locally as a multi-valued analytic
function in C

n up to the complex bicharacteristic conoid. This extension ramifies or not along its singular set the bicharacteristic
conoid and belongs to the Nilsson class. To cite this article: S. Lukasiewicz, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Prolongement holomorphe de solutions élémentaires d’opérateurs différentiel elliptiques du second degré à coefficients
analytiques. Toute solution élémentaire d’un opérateur différentiel elliptique du second ordre à coefficients analytiques et à caracté-
ristiques complexes simples peut se prolonger holomorphiquement (au moins localement) dans C

n jusqu’au cône bicaractéristique
complexe en se ramifiant éventuellement. Cette extension appartient à la classe de Nilsson. Pour citer cet article : S. Lukasiewicz,
C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction, notations and definitions

This kind of extension problems were studied for fundamental solutions of certain classes of hyperbolic differen-
tial operators in classical works of J. Leray [4]. We saw that we could generalize and adapt some of his results on
hyperbolic operators to the elliptic case. In [1], L. Boutet de Monvel proved that the singular fundamental solution
of an elliptic fundamental solution of an elliptic homogeneous linear differential operator with constant coefficients
and simple characteristics is a solution of a regular holonomic D-module. When the coefficients are analytic and the
symbol of the operator has constant coefficients D. Meyer [5] has proved that the singular fundamental solution of
such a differential operator is still a solution of a regular holonomic D-module. In both cases, as a consequence, the
fundamental solutions of these operators extend up to the bicharacteristic conoid and belong to the Nilsson class.
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Our result for elliptic linear partial differential operators with analytic coefficients generalize this consequence for
the second order. We use the standard multi-index notation. Let Ω ⊂ R

n be an open set, we denote by D′(Ω) the
space of distributions on Ω and by P(x,D) = ∑

|α|�2 aα(x) ∂
∂xα a linear differential operator of the second order with

analytic coefficients in Ω . Let T ∗Ω be the cotangent bundle of Ω and let ξ1, . . . , ξn be a coordinate system on its
fiber at (x1, . . . , xn). The principal symbol of P is defined as usual. P is said to be elliptic if a(x, ξ) �= 0 in T ∗Ω \ 0
where 0 denotes the zero section of T ∗Ω .

In what follows, the canonical projection of the usual bicharacteristics on Ω will also be called the bicharacteristics
of P . An elliptic operator has no real bicharacteristics. However, if we consider, following Leray [3], the characteristic
variety as a complex variety in T ∗

C
n, one defines complex bicharacteristics associated to P : the complex bicharacter-

istics will be solutions included in the complex characteristic variety of the Hamiltonian system (t ∈ C): dxi

dt
= ∂a(x,ξ)

∂ξi
;

dξi

dt
= − ∂a(x,ξ)

∂xi
with initial datas xi(0) = yi , ξ(0) = ξi , i ∈ {1, . . . , n}. The bicharacteristic conoid Γy is defined as the

union of all complex bicharacteristics with initial data y ∈ C
n.

Let X be a connected complex analytic manifold, x ∈ X and f be a an analytic germ at x. A multi-valued analytic
function f on X has finite determination if the complex vector space generated by the local branches of f has finite
dimension. Let f be a multi-valued analytic function in C

n \ Γ where Γ is a complex analytic hypersurface in C
n.

We say that f belongs to the Nilsson class [6,7] if f has finite determination and f has moderate growth along Γ :
for any open set U in C

n such that Γ ∩ U = {g(z) = 0}, where g is analytic function, there exists a positive integer N

such that for every semi-analytic set P , simply connected and relatively compact in U \ Γ , and for every local branch
of f , there exists a constant C such that ∀z ∈ P , |f (z)| � C

|g(z)|N .

In this Note, a distribution E(x,y) ∈ D′(Ω × Ω) depending on y as a parameter is called a fundamental solution
of P if PE(x, y) = δ(x − y).

2. Preliminary study on a few examples

We first notice that every fundamental solution of an elliptic operator P is the sum of a fundamental solution E

such that its singular support is reduced to a point y ∈ R
n (the singular solution) and an analytic solution of Pu = 0.

2.1. The Laplacian in R
n

A fundamental solution of the Laplacian � = ∑n
i=1

∂2

∂x2
i

in R
n is for n � 3: E(x,y) = cn

(2−n)|x−y|n−2 where cn

denotes the area of the (n − 1)-dimensional real unit sphere in Rn and |x − y| = [∑n
i=1(xi − yi)

2] 1
2 . For n = 2,

E(x,y) = log |x−y|
2π

. So E(x,y) has a holomorphic extension to C
n \ Q where Q is the isotropic cone of C

n:∑n
i=1(zi − z′

i )
2 = 0. Since |x − y|n−2 = [∑n

i=1(xi − yi)
2] n−2

2 , E(x,y) belongs to the Nilsson class. In particular,
we stress the fact that the isotropic cone is indeed the union of all complex bicharacteristics with initial data y. We
can too describe precisely the ramification: for n = 2, E(x,y) has a logarithmic ramification along the isotropic cone;
for n even, n � 4, E(x,y) is meromorphic with poles on the isotropic cone and, last case, for n odd, E(x,y) has two
ramifications along the isotropic cone.

2.2. The generalized Helmholtz operator in R
n

The generalized Helmholtz operator is the operator � + V (x) where V (x) is an analytic function. It is known that
the singular fundamental solution has the form: E(x,y) = F(x,y)

|x−y|n−2 + G(x,y) log |x − y| where F , G are analytical

functions. So it extends up to the isotropic cone of Cn and belongs to the Nilsson class.

3. Results

Theorem 3.1. Let

P(x,D) =
n∑

ai,j (x)
∂2

∂xi∂xj

+
n∑

bj (x)
∂

∂xj

+ c(x)
i,j=1 j=1
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be an elliptic operator where ai,j (x), bj (x), c(x) are analytic functions in Ω and ai,j (x) is assumed to be symmetric
without loss of generality. Denote by Ai,j (x) the inverse matrix of [ai,j (x)] and ds the Riemannian metric defined by:
ds2 = ∑n

i,j=1 Ai,j (x)dxi dxj , then a local fundamental solution of P is given by:

E(x,y) = F(x, y)

d(x, y)n−2
+ G(x,y) logd(x, y)2 + H(x,y)

where F , G, H denote three analytic functions in a neighborhood of the diagonal Ω × Ω .
If the dimension n is odd, we have G = 0. There is no logarithmic term and E(x,y) is ramified of order 2. If n is

even, E(x,y) has a polar singularity and possibly a logarithmic term.

Corollary 3.2. With the same notations, every fundamental solutions of an analytic elliptic differential operator of
the second order P can be extended at least locally as a multi-valued analytic function up to C

n \ Γy where Γy is the
bicharacteristic conoid with initial data y ∈ Ω . All those fundamental solutions belong to the Nilsson class.

Indeed, d(x, y)2 is defined and analytic in a neighborhood of x = y. So d(x, y)2 has a holomorphic extension in

a neighborhood of x = y. Now d(x, y)n−2 = [d(x, y)2] n−2
2 , so d(x, y)n−2 extends to a multi-valued analytic func-

tion with at most two ramifications along the isotropic cone d2 = 0. According to the lemma, we have proved the
proposition.

Remarks.

(1) Of course, this is true also for such operators on an analytic manifold X.
(2) When the operator has constant coefficients, the extension is global.
(3) The author is grateful to the referee for pointing out that the corollary remains true for elliptic differential operators

with complex coefficients and simple characteristics. It is not clear if our proof works by using the Goursat
problem (for the even dimension). But we may write instead of it G = ∑∞

k=0 Gk(x, y)d2k , take G0 as in the proof
and get the same kind of sequence of differential equations used in the proof; this asymptotics expansion is (with
the same argument) convergent for d2k small enough.

Proof of the theorem. The proof of the theorem is similar to the one given in Hadamard [2] for hyperbolic operators.
Let us sketch the proof. First, assume n is odd and that E(x,y)dn−2 expands in integral powers of d2: E(x,y) =

1
dn−2

∑∞
k=0 Fk(x, y)d2k .

We compute P(E(x, y)) and we use the fact that P(E(x, y)) = 0 when x �= y. Reparametrizing in geodesic normal
coordinates with a parameter s, we get the following crucial sequence of differential equations:

s
dF0

ds
+ (

θ(x, y) − m − 1
)
F0 = 0; ∀k � 1 s

dFk

ds
+ (

θ(x, y) − k − m − 1
)
Fk = − 1

4(k − m)
P [Fk−1]

where m = n−2
2 and

θ(x, y) = 1

4

(
n∑

i,j=1

ai,j (x)
∂2(d2)

∂xi∂xj

+
n∑

j=1

bj (x)
∂(d2)

∂xj

)

is an analytic function of x and y. The system is solvable if and only if θ(y, y) = m+ 1 = n
2 ; this is indeed the case as

one sees from a Taylor expansion of d2 in the neighborhood of (y, y) and we may integrate it to get F0,F1, . . . ,Fk, . . . .

We then check by a technique similar to Cauchy–Kowalewska theorem due to Hadamard [2] that the asymptotic
expansion

∑∞
k=0 Fk(x, y)d2k is convergent for d2k small enough.

For n even, with the same sequence of differential equations than for n odd, we may determine only F0, . . . ,Fm−1.
We expand then E(x,y) in the following way: E = ∑m−1

k=0 Fk(x, y)d2k + G logd2 + H . Since the logarithmic term
must cancel out , P(G) = 0. So we see that:

s
dG + (

θ(x, y) − 1
)
G = −1

P [Fm−1]

ds 4
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on the characteristic conoid d2 = 0. So we can compute the value G0 of G on the characteristic conoid:

G0(s) = −F0(s)

4sm

s∫
0

P(Fm−1)ξ
m−1

F0(ξ)
dξ.

Thus we have a Goursat problem and this determines G in a unique way as proved in Hadamard [2] paragraph 64.
Finally, H is chosen such that it satisfies the analytic partial differential P(H) = 0 in a neighborhood of y.

We finally check with Green’s formula help that this asymptotic solution is indeed a fundamental solution. �
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