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Abstract

We introduce a restricted four body problem in a 2 + 2 configuration extending the classical Sitnikov problem to the Double
Sitnikov problem. The secondary bodies are moving on the same perpendicular line to the plane where the primaries evolve, so
almost every solution is a collision orbit. We extend the solutions beyond collisions with a symplectic regularization and study the
set of energy surfaces that contain periodic orbits. To cite this article: H. Jiménez Pérez, E.A. Lacomba, C. R. Acad. Sci. Paris,
Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les orbites périodiques du problème de Sitnikov à quatre corps. On présente un problème à quatre corps en configuration
2 + 2 qui étend le problème de Sitnikov au problème double de Sitnikov. Dans cette configuration presque toute solution du pro-
blème est une orbite avec collisions. On étend les solutions qui présentent des collisions en utilisant une regularisation symplectique
et on étudie l’ensemble des surfaces d’énergie qui contiennent des orbites périodiques. Pour citer cet article : H. Jiménez Pérez,
E.A. Lacomba, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We extend the classical Sitnikov problem [2] that is a special case of the restricted three body problem to a restricted
four body problem in a 2 + 2 configuration. This configuration consists in two massive bodies evolving on Keplerian
orbits around their center of masses and two infinitesimal bodies evolving on the perpendicular line that cross the
center of masses. The Double Sitnikov Problem consists in determining the evolution of the infinitesimal bodies under
the Newtonian attraction of the massive bodies. Since the evolution of the secondaries is collinear we are interested
in solutions with elastic bouncing at collisions. In this Note, we consider the circular restricted case of the double
Sitnikov problem which is the integrable case. We study the periodic orbits on resonant tori.
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2. The circular double Sitnikov problem

We consider that primaries are evolving in circular Keplerian orbits and each one has mass m1 = m2 = 1
2 . The

secondary masses are related by ν = c μ with c ∈]0,1]. We choose the normalized masses α = 1
1+c

and β = 1 − α.
With these conditions the total energy of the system depends on α and μ as parameters as follows:

H = 1

2
pT M−1p − α√

q2
3 + 1/4

− β√
q2

4 + 1/4
− μ

β

q3 − q4
, where M =

(
α 0
0 β

)
. (1)

The Hamiltonian vector field is obtained by iXH
ω = dH . The configuration space will be P = {q3 > q4} and the flow

ϕ(x, t) = ϕt (x) is not complete by the singularity due to collision. To avoid the singularity and to extend analytically
the equations to the hyperplane q3 = q4 we perform a symplectic regularization with the mapping ρ : T ∗R2 → T ∗R2

defined through the generating function of second type,

W(Q,p) = p3

(
Q4 + β

Q2
1

2

)
+ p4

(
Q4 − α

Q2
3

2

)
.

Then the mapping ρ : (Q,P) �→ (q,p) is such that ρ∗(
∑

i dpi ∧dqi) = ∑
i dPi ∧dQi and, therefore ρ ∈ Sp(T ∗R2).

Also, we consider the time rescaling dt
dτ

= αβQ2
3. The regularized Hamiltonian function is L = αβQ2

3(H − h) ◦ ρ;
this Hamiltonian function depends on α, h and μ as parameters and is valid only in the energy level L = 0 for each h

fixed. If z = (Q3,Q4,P3,P4) we have explicitly:

L = 1

2

(
αβ P 2

4 Q2
3 + P 2

3

) − 2αβ2μ − αβQ2
3

[
2α√

(2Q4 + βQ2
3)

2 + 1
+ 2β√

(2Q4 − αQ2
3)

2 + 1
+ h

]
.

Obtaining limμ→0 Lh(z;α,μ) = Lh(z;α,0) and reversing the process, since αβQ2
3 is not identically zero, we recover

the Hamiltonian function without the term μ
β

q3−q4
. Finally, to extend the solutions in a continuous way beyond

collisions (with elastic bouncing) it is necessary that the linear momentum be conserved and it is possible if and
only if c = 1. We have the following:

Proposition 2.1. In the circular double Sitnikov problem if μ = ν then the flow ϕt (x) of the limiting case μ → 0 can
be extended to a complete flow in a natural way.

Then the Hamiltonian system of the double Sitnikov problem is the triplet (T ∗R2,ω,H) where

ω =
4∑

i=3

dpi ∧ dqi, and H = 1

2
|p|2 − 1√

q2
3 + 1/4

− 1√
q2

4 + 1/4
, p = (p3,p4).

3. Periodic orbits

Theorem 3.1. The action-angle coordinates for the circular double Sitnikov problem takes the form:

J (hi) =
√

2

π

(
2E(ki) − K(ki) − Π

(
2k2

i , ki

))
, θi(t;hi) = 1

Ωi

t (ν, k) + θ0,i , (2)

where Ωi =
√

2
4π(1−2k2

i )
(2E(ki) − K(ki) + Π(2k2

i , ki)) is the return time of the secondaries, ki =
√

2+hi

2 and θ0,i , for

i = 3,4, are constants determined by the initial conditions.

Theorem 3.2. The solutions for the circular double Sitnikov problem can be written as

(q3,p3, q4,p4)(t) =
(

k3 s(ν3) d(ν3)

1 − 2k2 s2(ν )
,2

√
2k3 c(ν3),

k4 s(ν4) d(ν4)

1 − 2k2 s2(ν )
,2

√
2k4 c(ν4)

)
,

3 3 4 4
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where νi are functions of t obtained inverting the function:

t =
∫ √

2

4(1 − 2k2
i sn(νi)2)2

dνi, (3)

and s(νi) ≡ sn(νi(t), ki), c(νi) ≡ cn(νi(t), ki), d(νi) ≡ dn(νi(t), ki) are the sine, cosine, and delta amplitude Jacobi

elliptic functions, and ki =
√

2+hi

2 for i = 3,4.

It is possible to integrate the expression (3) with elliptic functions and elliptic integrals to obtain:

t =
√

2

8(1 − 2k2)

[
2E(ν) − ν + Π

(
ν,2k2) − 4k2 sn(ν)cn(ν)dn(ν)

1 − 2k2sn(ν)2

]
+ C, (4)

where C is an arbitrary constant of integration. In [1] the reader will find a nice and complete study of this function.

Definition 3.3. We say that ϕ(t) is a periodic solution of period τ with τ > 0 if ϕ(t + τ) = ϕ(t) for all t ∈ R and there
does not exist τ̂ ∈ (0, τ ) such that ϕ(t + τ̂ ) = ϕ(t), i.e., τ is the minimum period.

We will use the notation (p, q,n) = 1 to mean that the greatest common divisor is gdc(p, q,n) = 1, in other words,
that the three numbers have not common factors at the same time.

Proposition 3.4. For every periodic solution of the double Sitnikov problem there exist 3-plets (p, q,n) ∈ Z3 such that
(p, q,n) = 1, and p >

q

2
√

2
and p > n

2
√

2
hold. The periods of these solutions are related to the partial energies by

τ = 2pπ = qT (h1) = nT (h2).

Definition 3.5. We say that an energy surface Σh∗ = H−1(h∗) accepts a periodic solution if there exists (p, q,n) ∈ N3

with the properties:

(P1) (p, q,n) = 1; and
(P2) p >

q

2
√

2
, p > n

2
√

2
such that h∗ = T −1(

2πp
q

) + T −1(
2πp
n

).

We denote the set of the constant energy surfaces that accept periodic orbits as

M = {
Σh = H−1(h) | h = h∗

}
.

Theorem 3.6. In the circular double Sitnikov problem there exists a countable number of energy surfaces Σ ∈ M that
contains resonant tori foliated by periodic orbits. Moreover, the set of values h∗ ∈ H(T ∗R2) ⊂ R such that Σh∗ ∈ M

is dense in (−4,0) and have zero measure in R.

The proof of the theorem is an immediate consequence of the two following lemmas:

Lemma 3.7. For each N ∈ N the circular double Sitnikov problem has periodic solutions of period 2Nπ .

We will just exhibit at least one periodic solution of period τ = 2Nπ . This is immediate from the fact that there
exists such periodic solutions in the circular (classical) Sitnikov problem.

Proof. For any N ∈ N we can choose the combination p = N and q = n = 1 that produce (p, q) = 1 and (p,n) = 1
with p >

q

2
√

2
and p > n

2
√

2
and Proposition 2.8 in [1] assures that there exists h1, h2 ∈ (−2,0) such that T (h1) = 2πp

q

and T (h2) = 2πp
n

, then the hypersurface H−1(h1 + h2) contains a torus foliated by a family of periodic orbits with
period τ = 2πN = T (h1) = T (h2). �
Lemma 3.8. For each N ∈ N fixed, the circular double Sitnikov problem have a finite number of tori foliated by
periodic orbits with period τ = 2Nπ . The number,



336 H. Jiménez Pérez, E.A. Lacomba / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 333–336
8Nϕ(N) +
∑

q<2
√

2N

ϕ(q); with ϕ(p) = p
∏
n|p

(
1 − 1

n

)
,

is an upper bound (although is not an optimum bound). ϕ(p) is the totient function or Euler’s phi function.

Proof. For each p ∈ N fixed there exist 3-plets (p, q,n) ∈ N3, where properties P1 and P2 of Definition 3.5 hold.
Therefore, we search for the number Cp of 3-plets (p, q,n) = 1 coprimes. It is easy to see that for every q < 2

√
2p

and (p,n) = 1, the 3-plet (p, q,n) does not have common divisors. This triplets are exactly (2
√

2p) · (2√
2ϕ(p)) =

8pϕ(p).
Additionally, we must add all the couples (q,n) coprime such that (p, q) and (p,n) are not coprime. This means

that for each integer q < 2
√

2p with (p, q) �= 1 we must add the number of coprimes ϕ(q). Then we have:

Cp < 8pϕ(p) +
∑

q<2
√

2p

ϕ(q). (5)

Finally we must eliminate the elements that are in both sets, however the number (5) is an upper bound of the triplets
(p, q,n) ∈ N3 where properties P1 and P2 holds.

The 3-plet (p, q,n) ∈ N3 induce a point x = (2π
p
q
,2π

p
n
) ∈ (T (h3), T (h4)) such that the Lagrangian torus T =

(μ−1 ◦ T −1)(x) is foliated by periodic orbits of period 2Nπ , therefore it is a resonant torus TRes ⊂ T ∗R2. �
Proof of Theorem 3.6. The first part of theorem is a consequence of the fact that the countable union of finite sets is
a countable set. Using Lemmas 2 and 3 we have that the number of resonant tori are countable, and since each torus
belongs to exactly one energy surface, the set M is countable too.

We define the map T : g∗ → R2 by (h3, h4) �→ (
T (h3)

2π
,

T (h4)
2π

). For each rational point y ∈ Img(T ) with y =
( r
s
, u

v
), (r, s) = 1 and (u, v) = 1, we construct the point ( ru

g
, su

g
, rv

g
) ∈ N3 where g = gcd(ru, su, rv). Since this point

fulfills properties P1 and P2 of Definition 3.5, there exists a resonant torus foliated by periodic orbits with period
τ = 2 ru

g
π = su

g
T (h3) = rv

g
T (h4). The set of rational values of T defined by RP := Img(T ) ∩ Q2 is a dense subset

of zero measure in Img(T ). The mapping T is continuous and then T −1(RP ) ⊂ g∗ is a dense subset in the image of
the momentum map μ. Now we construct the function H : g∗ → R such that x = (h3, h4) �→ h3 + h4. It is immediate
that H(T −1(RP )) ⊂ (−4,0) is a dense subset by continuity, and have zero measure since RP is a countable set. �
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