A congruence theorem for minimal surfaces in S^{5} with constant contact angle

Rodrigo Ristow Montes

Departamento de Matemática, Universidade Federal da Paraíba, BR-58.051-900, João Pessoa, P.B., Brazil
Received 19 June 2008; accepted after revision 21 October 2008
Available online 18 November 2008
Presented by Étienne Ghys

Abstract

We provide a congruence theorem for minimal surfaces in S^{5} with constant contact angle using the Gauss-Codazzi-Ricci equations. More precisely, we prove that the Gauss-Codazzi-Ricci equations for minimal surfaces in S^{5} with constant contact angle satisfy an equation for the Laplacian of the holomorphic angle. To cite this article: R.R. Montes, C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Théorème de congruence pour les surfaces minimales en $S^{\mathbf{5}}$ avec angle de contact constant. Nous présentons un théorème de congruence pour les surfaces minimales en S^{5} avec angle de contact constant en utilisant les équations de Gauss-CodazziRicci. Plus précisémént, nous prouvons que les équations de Gauss-Codazzi-Ricci pour les surfaces minimales en S^{5} avec angle de contact constant satisfont une équation pour le Laplacien de l'angle holomorphe. Pour citer cet article:R.R. Montes, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We will establish a condition in order to investigate minimal surfaces in S^{5} with constant contact angle using the Gauss-Codazzi-Ricci equations. We define α to be the angle given by $\cos \alpha=\left\langle i e_{1}, v\right\rangle$, where e_{1} and v are defined in Section 2. The holomorphic angle α is the analogue of the Kähler angle introduced by Chern and Wolfson in [2].

Recently, in [4], we construct a family of minimal tori in S^{5} with constant contact angle and constant holomorphic angle. These tori are parametrized by the following circle equation:

$$
\begin{equation*}
a^{2}+\left(b-\frac{\cos \beta}{1+\sin ^{2} \beta}\right)^{2}=2 \frac{\sin ^{4} \beta}{\left(1+\sin ^{2} \beta\right)^{2}} \tag{1}
\end{equation*}
$$

[^0]In particular, when $a=0$ in (1), we recover the examples found by Kenmotsu, in [3]. These examples are defined for $0<\beta<\frac{\pi}{2}$. Also, when $b=0$ in (1), we find a new family of minimal tori in S^{5}, and these tori are defined for $\frac{\pi}{4}<\beta<\frac{\pi}{2}$. Moreover, we show that the Gaussian curvature K of a minimal surface in S^{5} with contact angle β and holomorphic angle α is given by:

$$
\begin{equation*}
K=-\left(1+\tan ^{2} \beta\right)|\nabla \beta|^{2}-\tan \beta \Delta \beta-2 \cos \alpha\left(1+2 \tan ^{2} \beta\right) \beta_{1}+2 \tan \beta \sin \alpha \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha . \tag{2}
\end{equation*}
$$

In this Note, we will establish a congruence theorem for minimal surfaces in S^{5} with constant contact angle (β) with $\left(0<\beta<\frac{\pi}{2}\right)$. Supposing that the second fundamental form $\left(\Pi_{3}\right)$ in the direction e_{3} is diagonalized, and using Gauss-Codazzi-Ricci equations, we prove the following theorem:

Theorem 1. Consider S a simply connected riemannian surface, $\alpha: S \rightarrow] 0, \frac{\pi}{2}[$ a function over S that verifies the following equation:

$$
\begin{align*}
\Delta(\alpha)= & \cot \alpha \csc ^{3}(\beta)|\nabla \alpha|^{2}+a^{2} \cot \alpha \cot ^{4}(\beta)-2 a \cot \alpha \csc \beta \cot ^{2} \beta \alpha_{2} \\
& -2 \cos \alpha(\cot \beta-\tan \beta) \tan ^{2} \beta \alpha_{1}+\sin \alpha \cos \alpha\left(5-\cot ^{4} \beta-3 \csc ^{2} \beta\right) \tag{3}
\end{align*}
$$

then there exist one and only one minimal immersion of S into S^{5} with constant contact angle (β) such that (α) is the holomorphic angle of this immersion, where \mathbf{a} is given in Section 2, and its determined as a function of α and β in Section 3.

As an immediate consequence of this method, we have a classification of certain flat minimal surfaces in S^{5}
Corollary 1. Suppose that the contact angle (β) is constant, suppose that S is a flat minimal surface in S^{5} with constant principal curvature in the direction e_{3}, that is, \mathbf{a} is constant, and $\left(\Pi_{3}\right)$ is diagonalized, then the holomorphic angle (α) must be constant.

2. Gauss-Codazzi-Ricci equations for a minimal surface in S^{5} with constant contact angle β

In this section, we will compute the Gauss-Codazzi-Ricci equations for a minimal surface in S^{5} with constant contact angle β. Let S be an immersed orientable surface in S^{5}. Consider in \mathbb{C}^{3} the following objects:

- the Hermitian product: $(z, w)=\sum_{j=0}^{2} z^{j} \bar{w}^{j}$;
- the inner product: $\langle z, w\rangle=\operatorname{Re}(z, w)$;
- the unit sphere: $S^{5}=\left\{z \in \mathbb{C}^{3} \mid(z, z)=1\right\}$;
- the Reeb vector field in S^{5}, given by: $\xi(z)=i z$;
- the contact distribution in S^{5}, which is orthogonal to ξ :

$$
\Delta_{z}=\left\{v \in T_{z} S^{5} \mid\langle\xi, v\rangle=0\right\} .
$$

We observe that Δ is invariant by the complex structure of \mathbb{C}^{3}.
Definition 1. The contact angle β is the complementary angle between the contact distribution Δ and the tangent space $T S$ of the surface.

Let (e_{1}, e_{2}) be a local frame of $T S$, where $e_{1} \in T S \cap \Delta$, where e_{1} is the characteristic field and introduced by Bennequin in [1]. Then $\cos \beta=\left\langle\xi, e_{2}\right\rangle$. Finally, let v be the unit vector in the direction of the orthogonal projection of e_{2} on Δ, defined by the following relation

$$
\begin{equation*}
e_{2}=\sin \beta v+\cos \beta \xi . \tag{4}
\end{equation*}
$$

Assume that the fundamental second form in the direction of a normal vector field e_{3} is diagonal. Then we have the following connection forms:

$$
\begin{align*}
& \theta_{1}^{3}=a \theta^{1} ; \quad \theta_{2}^{3}=-a \theta^{2}, \\
& \theta_{1}^{4}=\mathrm{d} \alpha+(-\sin \alpha \cot \beta) \theta^{1}-a \csc \beta \theta^{2}, \\
& \theta_{2}^{4}=\mathrm{d} \alpha \circ J-a \csc \beta \theta^{1}-(-\sin \alpha \cot \beta) \theta^{2}, \\
& \theta_{1}^{5}=-\cos \alpha \theta^{2} ; \quad \theta_{2}^{5}=-\cos \alpha \theta^{1} . \tag{5}
\end{align*}
$$

Normal connection forms are:

$$
\begin{align*}
& \theta_{3}^{4}=-\cot \alpha \csc \beta \mathrm{d} \alpha \circ J+a \cot \alpha \cot ^{2} \beta \theta^{1}+(-\cos \alpha \cot \beta \csc \beta+2 \sec \beta \cos \alpha) \theta^{2}, \\
& \theta_{3}^{5}=(-\csc \beta \sin \alpha) \theta^{1}-a \cot \beta \theta^{2}, \\
& \theta_{4}^{5}=\cot \beta(\mathrm{d} \alpha \circ J)-a \cot \beta \csc \beta \theta^{1}+\left(\sin \alpha\left(\cot ^{2} \beta-1\right)\right) \theta^{2} . \tag{6}
\end{align*}
$$

Using the connection forms (5) and (6) in the Codazzi-Ricci equations, we have

$$
\mathrm{d} \theta_{1}^{3}+\theta_{2}^{3} \wedge \theta_{1}^{2}+\theta_{4}^{3} \wedge \theta_{1}^{4}+\theta_{5}^{3} \wedge \theta_{1}^{5}=0 .
$$

This implies that

$$
\begin{align*}
& -a_{2}+a^{2}\left(\cot \alpha \csc \beta \cot ^{2} \beta\right)-a \cot \alpha\left(\csc ^{2} \beta+\cot ^{2} \beta\right) \alpha_{2} \\
& \quad-\cos \alpha \csc \beta\left(2(\cot \beta-\tan \beta) \alpha_{1}-\sin \alpha\left(\cot ^{2} \beta-3\right)\right)+\cot \alpha \csc \beta|\nabla \alpha|^{2}=0 . \tag{7}
\end{align*}
$$

Replacing the following (5) and (6) in the Codazzi-Ricci equations

$$
\begin{aligned}
& \mathrm{d} \theta_{2}^{3}+\theta_{1}^{3} \wedge \theta_{2}^{1}+\theta_{4}^{3} \wedge \theta_{2}^{4}+\theta_{5}^{3} \wedge \theta_{2}^{5}=0, \\
& \mathrm{~d} \theta_{1}^{4}+\theta_{2}^{4} \wedge \theta_{1}^{2}+\theta_{3}^{4} \wedge \theta_{1}^{3}+\theta_{5}^{4} \wedge \theta_{1}^{5}=0, \\
& \mathrm{~d} \theta_{3}^{5}+\theta_{1}^{5} \wedge \theta_{3}^{1}+\theta_{2}^{5} \wedge \theta_{3}^{2}+\theta_{4}^{5} \wedge \theta_{3}^{4}=0 .
\end{aligned}
$$

We get

$$
\begin{equation*}
a_{1}+a\left(\cot \alpha \alpha_{1}+6 \tan \beta \cos \alpha\right)-2 \sec \beta \cos \alpha \alpha_{2}=0 . \tag{8}
\end{equation*}
$$

Using the connection forms (5) and (6) in the Codazzi-Ricci equations

$$
\begin{aligned}
& \mathrm{d} \theta_{2}^{4}+\theta_{1}^{4} \wedge \theta_{2}^{1}+\theta_{3}^{4} \wedge \theta_{2}^{3}+\theta_{5}^{4} \wedge \theta_{2}^{5}=0, \\
& \mathrm{~d} \theta_{4}^{5}+\theta_{1}^{5} \wedge \theta_{4}^{1}+\theta_{2}^{5} \wedge \theta_{4}^{2}+\theta_{3}^{5} \wedge \theta_{4}^{3}=0, \\
& \mathrm{~d} \theta_{3}^{4}+\theta_{1}^{4} \wedge \theta_{3}^{1}+\theta_{2}^{4} \wedge \theta_{3}^{2}+\theta_{5}^{4} \wedge \theta_{3}^{5}=0 .
\end{aligned}
$$

We have

$$
\begin{align*}
a_{2} & -a^{2}\left(\cot \alpha \sin \beta \cot ^{2} \beta\right)+a \cot \alpha \alpha_{2}+2 \cos \alpha(\cot \beta-3 \tan \beta) \\
& +2 \cos \alpha \sin \beta(\cot \beta-\tan \beta) \alpha_{1}+\sin \alpha \cos \alpha \sin \beta\left(5-\cot ^{2} \beta\right)+\sin \beta \Delta \alpha=0 \tag{9}
\end{align*}
$$

The Codazzi-Ricci equations

$$
\begin{aligned}
& \mathrm{d} \theta_{1}^{2}+\theta_{3}^{2} \wedge \theta_{1}^{3}+\theta_{4}^{2} \wedge \theta_{1}^{4}+\theta_{5}^{2} \wedge \theta_{1}^{5}=\theta^{2} \wedge \theta^{1}, \\
& \mathrm{~d} \theta_{1}^{5}+\theta_{2}^{5} \wedge \theta_{1}^{2}+\theta_{3}^{5} \wedge \theta_{1}^{3}+\theta_{4}^{5} \wedge \theta_{1}^{4}=0
\end{aligned}
$$

give the following equation

$$
\begin{align*}
& a^{2}\left(1+\csc ^{2} \beta\right)-2 a \csc \beta \alpha_{2}+|\nabla \alpha|^{2}+2 \sin \alpha(\tan \beta-\cot \beta) \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha \\
& \quad-\sin ^{2} \alpha\left(1-\cot ^{2} \beta\right)=0 . \tag{10}
\end{align*}
$$

The following Codazzi equation is automatically verified

$$
\mathrm{d} \theta_{2}^{5}+\theta_{1}^{5} \wedge \theta_{2}^{1}+\theta_{3}^{5} \wedge \theta_{2}^{3}+\theta_{4}^{5} \wedge \theta_{2}^{4}=0 .
$$

3. Proof of the results

Using Eqs. (7) and (9) we have:

$$
\begin{align*}
\Delta(\alpha)= & \cot \alpha \csc ^{3}(\beta)|\nabla \alpha|^{2}+a^{2} \cot \alpha \cot ^{4}(\beta)-2 a \cot \alpha \csc \beta \cot ^{2} \beta \alpha_{2} \\
& -2 \cos \alpha(\cot \beta-\tan \beta) \tan ^{2} \beta \alpha_{1}+\sin \alpha \cos \alpha\left(5-\cot ^{4} \beta-3 \csc ^{2} \beta\right) . \tag{11}
\end{align*}
$$

Using Eq. (10) we get a as the square root sign should cover all of $f(\alpha, \beta)$

$$
a=\frac{2 \csc \beta \alpha_{2}+\sqrt{f}(\alpha, \beta)}{2\left(1+\csc ^{2} \beta\right)}
$$

where $f(\alpha, \beta)$ is given by

$$
\begin{aligned}
f(\alpha, \beta)= & 4 \alpha_{2}^{2} \cot ^{2} \beta-4\left(1+\csc ^{2} \beta\right) \alpha_{1}^{2} \\
& -4\left(1+\csc ^{2} \beta\right)\left(2 \sin \alpha(\tan \beta-\cot \beta) \alpha_{1}-4 \tan ^{2} \beta \cos ^{2} \alpha-\sin ^{2} \alpha\left(1-\cot ^{2} \beta\right)\right)
\end{aligned}
$$

Namely, the frame field $e=\left(e_{0}, e_{1}, \ldots, e_{5}\right): S \rightarrow \mathrm{SO}(6)$, where $e_{0}=x$ gives rise to the differential 1-forms θ_{j}^{i}, $0 \leqslant i, j \leqslant 5$, defined by the entries of the $o(6)$ form $\theta=e^{-1} \mathrm{~d} e$. From the structure equations, $\mathrm{d} \theta=-\theta \wedge \theta$, which I call the Codazzi-Ricci equations, I derive the PDE (3), with Eq. (10) giving a as a function of α and β. Then, θ satisfies the structure equations of $\mathrm{SO}(6)$, and therefore there exist a map $e: S \rightarrow \mathrm{SO}(6)$ such that $e^{-1} \mathrm{~d} e=\theta$ (assuming that S is simply connected). The desired immersion is then given by $x=e_{0}$, which prove Theorem 1.

3.1. Proof of Corollary 1

Suppose that $K=0$ in Eq. (2), we determine α_{1} as a function of α, and from Eqs. (8) and (7), we get α as a function of β, and therefore constant, which prove Corollary 1.

References

[1] B. Aebischer, Sympletic Geometry, Progress in Mathematics, vol. 124, Springer-Verlag, Berlin-New York, 1992.
[2] S.S. Chern, J.G. Wolfson, Minimal surfaces by moving frames, Amer. J. Math. 105 (1983) 59-83.
[3] K. Kenmotsu, On a parametrization of minimal immersions R^{2} into S^{5}, Tohoku Math. J. 27 (1975) 83-90.
[4] R.R. Montes, J.A. Verderesi, Contact angle for immersed surfaces in $S^{2 n+1}$, Differential Geom. Appl. 25 (2007) 92-100.

[^0]: E-mail address: ristow@ mat.ufpb.br.

